We have used confocal and widefield microscopy to image thrombus formation in real time in the microcirculation of a living mouse. This system provides high-speed, near-simultaneous acquisition of images of multiple fluorescent probes and of a brightfield channel. Vascular injury is induced with a laser focused through the microscope optics. We observed platelet deposition, tissue factor accumulation and fibrin generation after laser-induced endothelial injury in a single developing thrombus. The initiation of blood coagulation in vivo entailed the initial accumulation of tissue factor on the upstream and thrombus-vessel wall interface of the developing thrombus. Subsequently tissue factor was associated with the interior of the thrombus. Tissue factor was biologically active, and was associated with fibrin generation within the thrombus.
Using a laser-induced endothelial injury model, we examined thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy to analyze this complex physiologic process in a system that includes the vessel wall, the presence of flowing blood, and the absence of anticoagulants. We observe P-selectin expression, tissue factor accumulation, and fibrin generation after platelet localization in the developing thrombus in arterioles of wild-type mice. However, mice lacking P-selectin glycoprotein ligand 1 (PSGL-1) or P-selectin, or wild-type mice infused with blocking P-selectin antibodies, developed platelet thrombi containing minimal tissue factor and fibrin. To explore the delivery of tissue factor into a developing thrombus, we identified monocyte-derived microparticles in human platelet–poor plasma that express tissue factor, PSGL-1, and CD14. Fluorescently labeled mouse microparticles infused into a recipient mouse localized within the developing thrombus, indicating that one pathway for the initiation of blood coagulation in vivo involves the accumulation of tissue factor– and PSGL-1–containing microparticles in the platelet thrombus expressing P-selectin. These monocyte-derived microparticles bind to activated platelets in an interaction mediated by platelet P-selectin and microparticle PSGL-1. We propose that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking.
Tissue factor (TF) is expressed on nonvascular cells and cells within the vessel wall and circulates in blood associated with microparticles. Although blood-borne TF accumulates into the developing thrombus during thrombus formation, the contribution of blood-borne TF and vessel wall TF to thrombin generation in vivo following vessel injury is unknown. To determine the source and role of bloodborne microparticle TF, we studied arterial thrombus formation in a living mouse using intravital microscopy. Platelet, TF, and fibrin accumulation in the developing thrombus was compared in wild-type and low TF mice. Compared to wild-type mice, low TF mice formed very small platelet thrombi lacking TF or fibrin. Wild-type and low TF mice received transplants of bone marrow from wild-type and low TF mice. Arterial thrombi in low TF bone marrow/wild-type chimeric mice had decreased size and decreased TF and fibrin levels. Arterial thrombi in wild-type bone marrow/low TF chimeric mice showed decreased platelet thrombus size but normal TF and fibrin levels. This demonstrates that blood-borne TF associated with hematopoietic cell-derived microparticles contributes to thrombus propagation. (Blood. 2004;104:3190-3197)
P-selectin glycoprotein ligand 1 (PSGL-1) is a mucin-like selectin counterreceptor that binds to P-selectin, E-selectin, and L-selectin. To determine its physiological role in cell adhesion as a mediator of leukocyte rolling and migration during inflammation, we prepared mice genetically deficient in PSGL-1 by targeted disruption of the PSGL-1 gene. The homozygous PSGL-1–deficient mouse was viable and fertile. The blood neutrophil count was modestly elevated. There was no evidence of spontaneous development of skin ulcerations or infections. Leukocyte infiltration in the chemical peritonitis model was significantly delayed. Leukocyte rolling in vivo, studied by intravital microscopy in postcapillary venules of the cremaster muscle, was markedly decreased 30 min after trauma in the PSGL-1–deficient mouse. In contrast, leukocyte rolling 2 h after tumor necrosis factor α stimulation was only modestly reduced, but blocking antibodies to E-selectin infused into the PSGL-1–deficient mouse almost completely eliminated leukocyte rolling. These results indicate that PSGL-1 is required for the early inflammatory responses but not for E-selectin–mediated responses. These kinetics are consistent with a model in which PSGL-1 is the predominant neutrophil P-selectin ligand but is not a required counterreceptor for E-selectin under in vivo physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.