Although dendritic cells (DCs) located in the small intestinal lamina propria (LP-DCs) migrate to mesenteric lymph nodes (MLNs) constitutively, it is unclear which chemokines regulate their trafficking to MLNs. In this study we report that LP-DCs in unperturbed mice require CCR7 to migrate to MLNs. In vitro, LP-DCs expressing CCR7 migrated toward CCL21, although the LP-DCs appeared morphologically and phenotypically immature. In MLNs, DCs bearing the unique LP-DC phenotype (CD11chighCD8αintCD11blowαLlowβ7high and CD11chighCD8α−CD11bhighαLlowβ7high) were abundant in wild-type mice, but were markedly fewer in CCL19-, CCL21-Ser-deficient plt/plt mice and were almost absent in CCR7-deficient mice, indicating the critical importance of CCR7 in LP-DC trafficking to MLNs. Interestingly, CCR7+ DCs in MLNs with the unique LP-DC phenotype had numerous vacuoles containing cellular debris in the cytoplasm, although MLN-DCs themselves were poorly phagocytic, suggesting that the debris was derived from the LP, where the LP-DCs ingested apoptotic intestinal epithelial cells (IECs). Consistent with this, LP-DCs ingested IECs vigorously in vitro. By presenting IEC-associated Ag, the LP-DCs also induce T cells to produce IL-4 and IL-10. Collectively, these results strongly suggest that LP-DCs with unique immunomodulatory activities migrate to MLNs in a CCR7-dependent manner to engage in the presentation of IEC-associated Ags acquired in the LP.
P-selectin glycoprotein ligand 1 (PSGL-1) is a mucin-like selectin counterreceptor that binds to P-selectin, E-selectin, and L-selectin. To determine its physiological role in cell adhesion as a mediator of leukocyte rolling and migration during inflammation, we prepared mice genetically deficient in PSGL-1 by targeted disruption of the PSGL-1 gene. The homozygous PSGL-1–deficient mouse was viable and fertile. The blood neutrophil count was modestly elevated. There was no evidence of spontaneous development of skin ulcerations or infections. Leukocyte infiltration in the chemical peritonitis model was significantly delayed. Leukocyte rolling in vivo, studied by intravital microscopy in postcapillary venules of the cremaster muscle, was markedly decreased 30 min after trauma in the PSGL-1–deficient mouse. In contrast, leukocyte rolling 2 h after tumor necrosis factor α stimulation was only modestly reduced, but blocking antibodies to E-selectin infused into the PSGL-1–deficient mouse almost completely eliminated leukocyte rolling. These results indicate that PSGL-1 is required for the early inflammatory responses but not for E-selectin–mediated responses. These kinetics are consistent with a model in which PSGL-1 is the predominant neutrophil P-selectin ligand but is not a required counterreceptor for E-selectin under in vivo physiological conditions.
Thromboxane A 2 (TXA 2 ) receptor is a key molecule in hemostasis as its abnormality leads to bleeding disorders. Two isoforms of the human TXA 2 receptor have been cloned; one from placenta and the other from endothelium, here referred to as TXR ␣ and TXR  , respectively. These isoforms differ only in their carboxyl-terminal tails. We report that both isoforms are present in human platelets. The two isoforms expressed in cultured cells show similar ligand binding characteristics and phospholipase C (PLC) activation but oppositely regulate adenylyl cyclase activity; TXR ␣ activates adenylyl cyclase, while TXR  inhibits it. The Arg 60 to Leu mutant of TXR ␣ , which has been shown to impair PLC activation (Hirata, T., A. Kakizuka, F. Ushikubi, I. Fuse, M. Okuma, and S. Narumiya. 1994. J. Clin. Invest. 94: 1662-1667), also impairs adenylyl cyclase stimulation, whereas that of TXR  retains its activity to inhibit adenylyl cyclase. These findings suggest that the pathway linked to adenylyl cyclase inhibition might be involved in some of the TXA 2 -induced platelet responses such as shape change and phospholipase A 2 activation which remain unaffected in the patients with this mutation. ( J. Clin. Invest. 1996. 97:949-956.)
P-selectin glycoprotein ligand 1 (PSGL-1) is a sialomucin expressed on leukocytes that mediates neutrophil rolling on the vascular endothelium. Here, the role of PSGL-1 in mediating lymphocyte migration was studied using mice lacking PSGL-1. In a contact hypersensitivity model, the infiltration of CD4+ T lymphocytes into the inflamed skin was reduced in PSGL-1–deficient mice. In vitro–generated T helper (Th)1 cells from PSGL-1–deficient mice did not bind to P-selectin and migrated less efficiently into the inflamed skin than wild-type Th1 cells. To assess the role of PSGL-1 in P- or E-selectin–mediated migration of Th1 cells, the cells were injected into E- or P-selectin–deficient mice. PSGL-1–deficient Th1 cells did not migrate into the inflamed skin of E-selectin–deficient mice, indicating that PSGL-1 on Th1 cells is the sole ligand for P-selectin in vivo. In contrast, PSGL-1–deficient Th1 cells migrated into the inflamed skin of P-selectin–deficient mice, although less efficiently than wild-type Th1 cells. This E-selectin–mediated migration of PSGL-1–deficient or wild-type Th1 cells was not altered by injecting a blocking antibody to L-selectin. These data provide evidence that PSGL-1 on Th1 cells functions as one of the E-selectin ligands in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.