For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment-visit https://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov.
From October 2002 to April 2004, data were collected from Dallas/Fort Worth (DFW) International Airport (TX, U.S.A.) outfalls and receiving waters (Trigg Lake and Big Bear Creek) to document the magnitude and potential effects of aircraft deicer and anti-icer fluid (ADAF) runoff on water quality. Glycol concentrations at outfalls ranged from less than 18 to 23,800 mg/L, whereas concentrations in Big Bear Creek were less because of dilution, dispersion, and degradation, ranging from less than 18 to 230 mg/L. Annual loading results indicate that 10 and 35% of what was applied to aircraft was discharged to Big Bear Creek in 2003 and 2004, respectively. Glycol that entered Trigg Lake was diluted and degraded before reaching the lake outlet. Dissolved oxygen (DO) concentrations at airport outfalls sometimes were low (<2.0 mg/L) but typical of what was measured in an urban reference stream. In comparison, the DO concentration at Trigg Lake monitoring sites was consistently greater than 5.5 mg/L during the monitoring period, probably because of the installation of aerators in the lake by DFW personnel. The DO concentration in Big Bear Creek was very similar at sites upstream and downstream of airport influence (>5.0 mg/L). Results of toxicity tests indicate that effects on Ceriodaphnia dubia, Pimephales promelas, and Selanastrum capricornutum are influenced by type IV ADAF (anti-icer), not just type I ADAF (deicer) as is more commonly assumed.
Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for waterbudgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energybudget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam Rayburn Lake) to evaluate their performance and to develop coefficients to minimize bias for the purpose of estimating reservoir evaporation with accuracies similar to estimates of evaporation obtained from pan data. The modified Hamon method estimates of reservoir evaporation were similar to estimates of reservoir evaporation from pan data for daily, monthly, and annual time periods. The modified Hamon method estimates of annual reservoir evaporation were always within 20 percent of annual reservoir evaporation from pan data. Unmodified and modified USWB method estimates of annual reservoir evaporation were within 20 percent of annual reservoir evaporation from pan data for about 91 percent of the years compared. Average daily differences between modified USWB method estimates and estimates from pan data as a percentage of the average amount of daily evaporation from pan data were within 20 percent for 98 percent of the months. Without any modification to the USWB method, average daily differences as a percentage of the average amount of daily evaporation f...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.