We report the development of a Pd-catalyzed process for the cross coupling of unactivated primary, secondary, and tertiary alkylcarbastannatrane nucleophiles with acyl electrophiles. Reactions involving optically active alkylcarbastannatranes occur with exceptional stereofidelity and with net retention of absolute configuration. Because the stereochemistry of the resulting products is entirely reagent controlled, this process may be viewed as a general, alternative approach to the preparation of products typically accessed via asymmetric enolate methodologies. Additionally, we report a new method for the preparation of optically active alkylcarbastannatranes, which should facilitate their future use in stereospecific reactions.
A novel strategy employing cyclohexyl spectator ligands in Stille cross-coupling reactions has been developed as a general solution to the long-standing challenge of conducting stereospecific cross-coupling reactions at nitrogen-containing stereocenters. This method enables direct access to enantioenriched products that are difficult (or impossible) to obtain via alternative preparative methods. Selective and predictable transfer of a single secondary alkyl unit can be achieved under reaction conditions that exploit subtle electronic differences between activated and unactivated alkyl units. Through this approach, enantioenriched α-stannylated nitrogen-containing stereocenters undergo Pd-catalyzed arylation and acylation reactions with exceptionally high stereofidelity in all instances investigated. We demonstrate this process by using α-stannylated pyrrolidine, azetidine, and open-chain (benzylic and non-benzylic) nucleophiles in stereospecific reactions. This process will facilitate rapid and reliable access to enantioenriched compounds possessing nitrogen-substituted stereocenters, which constitute ubiquitous structural motifs in biologically active compounds emerging from the drug-discovery process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.