The atomic layer deposition (ALD) of AlN from AlCl 3 was investigated using a thermal process with NH 3 and a plasma-enhanced (PE)ALD process with Ar/NH 3 plasma. The growth was limited in the thermal process by the low reactivity of NH 3 , and impractically long pulses were required to reach saturation. Despite the plasma activation, the growth per cycle in the PEALD process was lower than that in the thermal process (0.4 Å vs 0.7 Å). However, the plasma process resulted in a lower concentration of impurities in the films compared to the thermal process. Both the thermal and plasma processes yielded crystalline films; however, the degree of crystallinity was higher in the plasma process. The films had a preferential orientation of the hexagonal AlN [002] direction normal to the silicon (100) wafer surface. With the plasma process, film stress control was possible and tensile, compressive, or zero stress films were obtained by simply adjusting the plasma time.
Wafer-level solid liquid interdiffusion (SLID) bonding, also known as transient liquid-phase bonding, is becoming an increasingly attractive method for industrial usage since it can provide simultaneous formation of electrical interconnections and hermetic encapsulation for microelectromechanical systems. Additionally, SLID is utilized in die-attach bonding for electronic power components. In order to ensure the functionality and reliability of the devices, a fundamental understanding of the formation and evolution of interconnection microstructures, as well as global and local stresses, is of utmost importance. In this work a low-temperature Cu-In-Sn based SLID bonding process is presented. It was discovered that by introducing In to the traditional Cu-Sn metallurgy as an additional alloying element, it is possible to significantly decrease the bonding temperature. Decreasing the bonding temperature results in lower CTE induced global residual stresses. However, there are still several open issues to be studied regarding the effects of dissolved In on the physical properties of the Cu-Sn intermetallics. Additionally, partially metastable microstructures were observed in bonded samples that did not significantly evolve during thermal annealing. This indicates the Cu-In-Sn SLID bond microstructure is extremely stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.