Solid-liquid interdiffusion (SLID) bonding for microelectronics and microsystems is a bonding technique relying on intermetallics. The high-melting temperature of intermetallics allows for system operation at far higher temperatures than what solder-bonded systems can do, while still using similar process temperatures as in common solder processes. Additional benefits of SLID bonding are possibilities of fine-pitch bonding, as well as thin-layer metallurgical bonding. Our group has worked on a number of SLID metal systems. We have optimized wafer-level Cu-Sn SLID bonding to become an industrially feasible process, and we have verified the reliability of Au-Sn SLID bonding in a thermally mismatched system, as well as determined the actual phases present in an Au-Sn SLID bond. We have demonstrated SLID bonding for very high temperatures (Ni-Sn, having intermetallics with melting points up to 1280°C), as well as SLID with low process temperatures (Au-In, processed at 180°C, and Au-In-Bi, processed at 90-115°C). We have verified experimentally the high-temperature stability for our systems, with quantified strength at temperatures up to 300°C for three of the systems: Cu-Sn, Au-Sn and Au-In.Keywords: microelectronics/microsystem assembly, bonding technology, harsh environments, wafer processing, reliability, transient liquid phase © 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Motivation for SLID
The challenge of die attach and interconnectionFor all electronic systems, the attachment of components to substrates and their electrical connection is a crucial part of the system. Traditionally, the processes for attachment and interconnection have been considered more a craft than a science. The historical focus of electronics and microtechnology has been on the design, manufacturing and testing of components, circuits and devices, rather than on the system integration and the processes needed for actually building the system. The 'electronic revolution' has given ever-increasing performance of devices at ever-decreasing prices for more than half a century. Initial milestones were the invention of the transistor (1947) and the integrated circuit (IC) (1958). The driving factor has been a continuous decrease in size (of components and on features of components) and cost, made possible through batch processing of silicon wafers. Single-crystal silicon is a very well-defined material with extremely well-characterized properties, allowing process technology that yields extremely small features (10 nm by 2017, with a further decrease expected). Miniaturization of components and the use of large Si wafers give a huge number of components manufactured in every batch, lowering the cost. Furthermore, miniaturization allows an increase in operating frequency (or a decrease...