Occupant behaviors are one of the dominant factors that influence building energy use. Traditional building energy modeling programs use typical occupant schedules that often do not reflect actual situations. Robust occupant behavior modeling that seamlessly integrates with building energy models will not only improve simulation performance, but also provide a deeper understanding of occupant behaviors in buildings. This paper presents a development and validation approach to a novel occupant behavior model in commercial buildings. A robust agent-based modeling (ABM) tool, namely Performance Moderator Functions server (PMFserv), is used as the basis of the occupant behavior model. The ABM considers various occupant perceptions and interactions with window, door, and window-blinds based on the environmental conditions. An elaborate agent-based model that represents an office space in an existing building is developed. This is followed by a validation study of the ABM through the use of embedded sensors that capture the indoor ambient conditions and a survey to record actual occupant behaviors. By comparing the recorded behavior data with ABM output, this paper discusses the proposed ABM's prediction ability, limitations, and extensibility. Finally, the paper concludes with the potential of integrating the occupant behavior model with building energy simulation programs.
PurposeExplore whether agent-based modeling and simulation can help healthcare administrators discover interventions that increase population wellness and quality of care while, simultaneously, decreasing costs. Since important dynamics often lie in the social determinants outside the health facilities that provide services, this study thus models the problem at three levels (individuals, organizations, and society). MethodsThe study explores the utility of translating an existing (prize winning) software for modeling complex societal systems and agent's daily life activities (like a Sim City style of software), into a desired decision support system. A case study tests if the 3 levels of system modeling approach is feasible, valid, and useful. The case study involves an urban population with serious mental health and Philadelphia's Medicaid population (n = 527,056), in particular. ResultsSection 3 explains the models using data from the case study and thereby establishes feasibility of the approach for modeling a real system. The models were trained and tuned using national epidemiologic datasets and various domain expert inputs. To avoid co-mingling of training and testing data, the simulations were then run and compared (Section 4.1) to an analysis of 250,000 Philadelphia patient hospital admissions for the year 2010 in terms of re-hospitalization rate, number of doctor visits, and days in hospital. Based on the Student t-test, deviations between simulated vs. real world outcomes are not statistically significant. Validity is thus established for the 2008-2010 timeframe. We computed models of various types of interventions that were ineffective as well as 4 categories of interventions (e.g., reduced per-nurse caseload, increased check-ins and stays, etc.) that result in improvement in well-being and cost. ConclusionsThe 3 level approach appears to be useful to help health administrators sort through system complexities to find effective interventions at lower costs. AbstractPurpose: Explore whether agent-based modeling and simulation can help healthcare administrators discover interventions that increase population wellness and quality of care while, simultaneously, decreasing costs. Since important dynamics often lie in the social determinants outside the health facilities that provide services, this study thus models the problem at three levels (individuals, organizations, and society). Methods:The study explores the utility of translating an existing (prize winning) software for modeling complex societal systems and agent's daily life activities (like a Sim City style of software), into a desired decision support system. A case study tests if the 3 levels of system modeling approach is feasible, valid, and useful. The case study involves an urban population with serious mental health and Philadelphia's Medicaid population (n=527,056), in particular.Results: Section 3 explains the models using data from the case study and thereby establishes feasibility of the approach for modeling a real system. ...
Many producers and consumers of legacy training simulator and game environments are beginning to envision a new era where psycho-socio-physiologic models could be interoperated to enhance their environments' simulation of human agents. This paper explores whether we could embed our behavior modeling framework (described in the companion paper, Part 1) behind a legacy first person shooter 3D game environment to recreate portions of the Black Hawk Down scenario. Section 1 amplifies the interoperability needs and challenges confronting the field, presents the questions that are examined, and describes the test scenario. Sections 2 and 3 review the software and knowledge engineering methodology, respectively, needed to create the system and populate it with bots. Results (Section 4) and discussion (Section 5) reveal that we were able to generate plausible and adaptive recreations of Somalian crowds, militia, women acting as shields, suicide bombers, and more. Also, there are specific lessons learned about ways to advance the field so that such interoperabilities will become more affordable and widespread. Philadelphia, PA 19104-6315, USA. e-mail: barryg@seas.upenn.edu ABSTRACT Many producers and consumers of legacy training simulator and game environments are beginning to envision a new era where psych-socio-physiologic models could be interoperated to enhance their environments' simulation of human agents. This article explores whether we could embed our behavior modeling framework (described in Part I) behind a legacy first person shooter 3-D game environment to recreate portions of the Black Hawk Down scenario. Section One amplifies on the inter-operability needs and challenges confronting the field, presents the questions that are examined, and describes the test scenario. Sections 2 and 3 review the software and knowledge engineering methodology, respectively, needed to create the system and populate it with bots. Results (Section 4) and discussion (Section 5) reveal that we were able to generate plausible and adaptive recreations of Somalian crowds, militia, women acting as shields, suicide bombers, and more. Also, there are specific lessons learned about ways to advance the field so that such inter-operabilities will become more affordable and widespread.
The philosophical perspectives on model evaluation can be broadly classified into reductionist/logical positivist and relativist/holistic. In this paper, we outline some of our past efforts in, and challenges faced during, evaluating models of social systems with cognitively detailed agents. Owing to richness in the model, we argue that the holistic approach and consequent continuous improvement are essential to evaluating complex social system models such as these. A social system built primarily of cognitively detailed agents can provide multiple levels of correspondence, both at observable and abstract aggregated levels. Such a system can also pose several challenges, including large feature spaces, issues in information elicitation with database, experts and news feeds, counterfactuals, fragmented theoretical base, and limited funding for validation. We subscribe to the view that no model can faithfully represent reality, but detailed, descriptive models are useful in learning about the system and bringing about a qualitative jump in understanding of the system it attempts to model – provided they are properly validated. Our own approach to model evaluation is to consider the entire life cycle and assess the validity under two broad dimensions of (1) internally focused validity/quality achieved through structural, methodological, and ontological evaluations; and (2) external validity consisting of micro validity, macro validity, and qualitative, causal and narrative validity. In this paper, we also elaborate on selected validation techniques that we have employed in the past. We recommend a triangulation of multiple validation techniques, including methodological soundness, qualitative validation techniques, such as face validation by experts and narrative validation, and formal validation tests, including correspondence testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.