Purpose The venous limb of arteriovenous fistulae (AVF) adapts to the arterial environment by dilation and wall thickening; however the temporal regulation of the expression of extracellular matrix (ECM) components in the venous limb of the maturing AVF has not been well characterized. We used a murine model of AVF maturation that recapitulates human AVF maturation to determine the temporal pattern of expression of these ECM components. Methods Aortocaval fistulae were created in C57BL/6J mice and the venous limb was analyzed on post-operative days 1, 3, 7, 21, and 42. A gene microarray analysis was performed on day 7; results were confirmed by qPCR, histology, and immunohistochemistry. Proteases, protease-inhibitors, collagens, glycoproteins and other non-collagenous proteins were characterized. Results The maturing AVF has increased expression of many ECM components, including increased collagen and elastin. Matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinase 1 (TIMP1) showed increased mRNA and protein expression during the first 7 days of maturation. Increased collagen and elastin expression was also significant at day 7. Expression of structural proteins was increased later during AVF maturation. Osteopontin (OPN) expression was increased at day 1 and sustained during AVF maturation. Conclusion During AVF maturation there is significantly increased expression of ECM components, each of which shows distinct temporal patterns during AVF maturation. Increased expression of regulatory proteins such as MMP and TIMP precedes increased expression of structural proteins such as collagen and elastin, potentially mediating a controlled pattern of ECM degradation and vessel remodeling without structural failure.
Objective Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix (ECM) components, promotes wall thickening and ECM deposition during AVF maturation. Approach and Results AVF were created via needle puncture in wild-type (WT) C57BL/6J and CD44 knockout (KO) mice. CD44 mRNA and protein expression was increased in WT AVF. CD44 KO mice showed no increase in AVF wall thickness (8.9 μm vs. 26.8 μm; P = 0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared to control AVF. CD44 KO mice also showed no increase in VCAM-1 expression, ICAM-1 expression and MCP-1 expression in the AVF compared to controls; there were also no increased M2 macrophage markers (TGM2: 81.5 fold, P = 0.0015; IL-10: 7.6 fold, P = 0.0450) in CD44 KO mice. Delivery of MCP-1 to CD44 KO mice rescued the phenotype with thicker AVF walls (27.2 μm vs. 14.7 μm; P = 0.0306), increased collagen density (2.4 fold; P = 0.0432), and increased number of M2 macrophages (2.1 fold; P = 0.0335). Conclusions CD44 promotes accumulation of M2 macrophages, ECM deposition and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation.
Oriented collagen scaffolds were developed in the form of sheet, mesh and tube by arraying flow-oriented collagen string gels and dehydrating the arrayed gels. The developed collagen scaffolds can be any practical size with any direction of orientation for tissue engineering applications. The birefringence of the collagen scaffolds was quantitatively analyzed by parallel Nicols method. Since native collagen in the human body has orientations such as bone, cartilage, tendon and cornea, and the orientation has a special role for the function of human organs, the developed various types of three-dimensional oriented collagen scaffolds are expected to be useful biomaterials for tissue engineering and regenerative medicines.
Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.