The hidden photon model is one of the simplest models which can explain the anomaly of the muon anomalous magnetic moment (g − 2). The experimental constraints are studied in detail, which come from the electron g − 2 and the hydrogen transition frequencies. The input parameters are set carefully in order to take dark photon contributions into account and to prevent the analysis from being self-inconsistent. It is shown that the new analysis provides a constraint severer by more than one order of magnitude than the previous result.
We compute the NLO virtual corrections to the partonic cross section of gg → HH, in the high energy limit. Finite Higgs boson mass effects are taken into account via an expansion which is shown to converge quickly. We obtain analytic results for the next-to-leading order form factors which can be used to compute the cross section. The method used for the calculation of the (non-planar) master integrals is described in detail and explicit results are presented.
Abstract:We consider the virtual corrections to the process gg → HH at NLO in the high energy limit and compute the corresponding planar master integrals in an expansion for small top quark mass. We provide details on the evaluation of the boundary conditions and present analytic results expressed in terms of harmonic polylogarithms.
We consider the next-to-leading order QCD corrections to Higgs boson pair production, using our recent calculation of the form factors in the high-energy limit. We compute the virtual corrections to the partonic cross section, applying Padé approximations to extend the range of validity of the high-energy expansion. This enables us to compare to the exact numerical calculation in a significant part of the phase space and allows us to extend the virtual matrix element grid, based on the exact numerical calculation, to larger values of the (partonic) transverse momentum of the Higgs boson, which is important for boosted Higgs studies. Improved predictions for hadron colliders with centre-of-mass energies of 14 TeV and 100 TeV are presented. The updated grid is made publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.