We compute the NLO virtual corrections to the partonic cross section of gg → HH, in the high energy limit. Finite Higgs boson mass effects are taken into account via an expansion which is shown to converge quickly. We obtain analytic results for the next-to-leading order form factors which can be used to compute the cross section. The method used for the calculation of the (non-planar) master integrals is described in detail and explicit results are presented.
We have computed the fourth-order n 2 f contributions to all three non-singlet quark-quark splitting functions and their four n 3 f flavour-singlet counterparts for the evolution of the parton distributions of hadrons in perturbative QCD with n f effectively massless quark flavours. The analytic form of these functions is presented in both Mellin N-space and momentum-fraction x-space; the large-x and small-x limits are discussed. Our results agree with all available predictions derived from lower-order information. The large-x limit of the quark-quark cases provides the complete n 2 f part of the four-loop cusp anomalous dimension which agrees with two recent partial computations.
Abstract:We consider the virtual corrections to the process gg → HH at NLO in the high energy limit and compute the corresponding planar master integrals in an expansion for small top quark mass. We provide details on the evaluation of the boundary conditions and present analytic results expressed in terms of harmonic polylogarithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.