This paper proposes a methodology for evaluating a controller's ability to satisfy a set of closed-loop specifications when the plant has an arbitrary functional dependency on uncertain parameters. Control verification metrics applicable to deterministic and probabilistic uncertainty models are proposed. These metrics, which result from sizing the largest uncertainty set of a given class for which the specifications are satisfied, enable systematic assessment of competing control alternatives regardless of the methods used to derive them. A particularly attractive feature of the tools derived is that their efficiency and accuracy do not depend on the robustness of the controller. This is in sharp contrast to Monte Carlo based methods where the number of simulations required to accurately approximate the failure probability grows exponentially with its closeness to zero. This framework allows for the integration of complex, high-fidelity simulations of the integrated system and only requires standard optimization algorithms for its implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.