The purpose of this work is to investigate the influence of filler content on the bending properties of dental composites by use of the finite-element method (FEM). The proposed numerical model was constructed from isotropic shell elements representing silica filler, and isotropic beam elements representing the remaining matrix resin. The proposed model was applied to failure analysis under three-point bending conditions. The validity of applying the numerical model to the failure progression analysis of composites was checked through comparison with experimental results. The results show that, in both the analytical and experimental results, the bending properties, such as maximum bending stress and bending modulus, increase with filler content. Also, the proposed method of failure progression analysis could better simulate the failure process of composites under three-point bending conditions. In addition, close agreement between the analytical and experimental results was confirmed. The above results indicate that the proposed numerical model is effective for evaluating the bending properties of dental filler composites of any content range.
Thermoplastic resins used as a matrix of fiber reinforced thermoplastics (FRTPs) are composed of high polymers that remain highly viscous even at a higher temperature than their melting points. As a result, they need an even higher temperature, a higher pressure and a longer processing time to allow them to bond with fibers that require large and specialized equipment. In contrast, fiber-reinforced thermoset plastics (FRPs) can be easily molded owing to the use of lower viscosity liquid resin as the matrix using simpler devices. In this paper, a new fabrication method of FRTPs using in situ polymerizable ε caprolactam as the matrix is presented. This method uses vacuum-assisted resin transfer molding without the need for large and specialized equipment. The ε -caprolactam molecules were converted from their monomer form into a polyamide 6 resin, with ring-opening polymerization of ε -caprolactam during the molding process at a lower temperature than its melting temperature. The two kinds of FRTPs obtained using ε -caprolactam as the matrix had neither voids nor unfilled parts because ε -caprolactam had a very low viscosity before the polymerization. These FRTPs not only exhibit superior bending properties but also are suitable for high-speed molding, namely, within a few minutes of process time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.