While seemingly simple, handover requires joint coordinate efforts from both partners, commonly in dynamic collaborative scenarios. Practically, humans are able to adapt and react to their partner’s movement to ensure seamless interaction against perturbations or interruptions. However, literature on robotic handover usually considers straightforward scenarios. We propose an online trajectory generation method based on Dynamic Movement Primitives to enable reactive robot behavior in perturbed scenarios. Thus, the robot is able to adapt to human motion (stopping should the handover be interrupted while persisting through minor disturbances on the partner’s trajectory). Qualitative analysis is conducted to demonstrate the capability of the proposed controller with different parameter settings and against a non-reactive implementation. This analysis shows that controllers with reactive parameter settings produce robot trajectories that can be deemed as more coordinated under perturbation. Additionally, a randomized trial with participants is conducted to validate the approach by assessing the subject perception through a questionnaire while measuring task completion and robot idle time. Our method has been shown to significantly increase the subjective perception of the interaction with no statistically significant deterioration in task performance metrics under one of the two sets of parameters analyzed. This paper represents a first step towards the introduction of reactive controllers in handover tasks that explicitly consider perturbations and interruptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.