This study focused on the evaluation of the physicochemical and rheological properties of chickpea flours and blends obtained by partially substituting rice flour (25%) with raw, roasted and dehulled chickpea flour. The characteristics of the resultant doughs were evaluated. In comparison with rice flour, blends containing chickpea flours exhibited high protein and fat content, a reduced retrogradation tendency (setback values of 404-415 vs. 479 BU) and a higher foaming capacity and stability, which can be beneficial for their use in baked food formulations. However, roasting decreased foaming capacity and stability. Even if the rheofermentographic test evidenced a slight reduction in dough development, high CO 2 retention capacity (> 98%) and similar-to-lower leavening times were observed for doughs containing chickpea flours. Incorporating chickpea flours also caused an increase in the viscous and elastic moduli of rice-based doughs, resulting in a good structuring of the dough. The results of this study indicated that chickpea flours could be used as a healthy ingredient in gluten-free rice-based formulations.
The main objective of this study was to develop a healthy rice-based gluten-free bread by using raw, roasted, or dehulled chickpea flours. All breads containing chickpea flours showed a darker crust and were characterized by an alveolar (porosity 41.5–51.4%) and soft crumb (hardness 5.5-14.1 N). Roasted chickpea flour bread exhibited the highest specific volume, the softest crumb, and the slowest staling rate. Enriching rice-based breads with the chickpea flours resulted in increased protein (from 9.72 to 12.03–13.21 g/100 g dm), ash (from 2.01 to 2.45–2.78 g/100 g dm), fat (from 1.61 to 4.58–5.86 g/100 g), and total phenolic contents (from 49.36 up to 80.52 mg GAE/100 g dm), and in reduced (~10–14% and 13.7–17%, respectively) available starch levels and rapidly digestible starch compared to rice bread. Breads with roasted chickpea flour also showed the highest in vitro protein digestibility. The results of this study indicated that the enrichment of rice-based gluten-free breads with chickpea flours improved the technological and nutritional quality of the breads differently according to the processed chickpea flour used, also allowing recovery of a waste product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.