The hull of the marine vehicle can be optimized based on the target one or more purposes. One of the most frequently purposes is the form optimization to obtain the most suitable form in terms of resistance. When it comes to energy efficiency, optimizing the vessel's form in terms of resistance means less fuel consumption. However, it is thought that the effect of the optimized form on other dynamics in the marine vehicle should also be investigated. Resistance coefficients were obtained for this purpose by constructing various bow and stern forms for a simple submarine form. The resistance coefficients of both the submarine and the form derived from this submarine were validated again in this study since different software programs were used in the previous study. These dimensionless resistance coefficients obtained for various velocities were compared to each other and the experimental data. Furthermore, the static drift analyses are performed to obtain the sway force and yaw moment at various attack angles. The dimensionless hydrodynamic coefficients, such as Y_v and N_v, have been calculated with fitting a curve to the values of sway forces and yaw moments. The non-dimensional hydrodynamic coefficients differences calculated for the submarine and derived bare hull are close to each other when compared in terms of maneuvering derivatives.
In this study, a proposed mathematical model consists of two parts, one is the maneuvering model, called MMG (Mathematical Model Group), and the other is a control algorithm based on traditional PD control system. The MMG model is used to compute the ship's maneuvering characteristics, and a ship can safely reach target coordinates with the help of a control algorithm if it encounters any obstacles along the way. Because of the suitable hydrodynamic coefficients of Esso Osaka, the proposed mathematical model is evaluated using trial test data from Esso Osaka. Firstly, the maneuvering characteristics of the ship were determined by performing the turning and zigzag tests for different velocity of the ship. By comparing the results obtained with the trial test results of the Esso Osaka, the suggested model was verified. Secondly, the ship's route was obtained for a determined target coordinate. Thirdly, a new route is automatically obtained by assuming that there is an obstacle between the starting point of the ship and the target coordinate determined for the previous simulation. As a result, this new route is created thanks to the virtual coordinates determined in accordance with the COLREGs rules. Since the maneuvering characteristic values of the ship are included in the written algorithm, it directly affects the determination of the virtual coordinates. Therefore, it is very important to find accurate maneuvering characteristics. Evaluating the simulation results obtained from the proposed mathematical model, it is concluded that a safe route has been created between the coordinates determined for the Esso Osaka ship. Moreover, the ship reaches the target coordinate without any collision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.