Abstract:The placement of an inferior vena cava (IVC) filter is a well-established management strategy for patients with venous thromboembolism (VTE) disease in whom anticoagulant therapy is either contraindicated or has failed. IVC filters may also be placed for VTE prophylaxis in certain circumstances.There has been a tremendous growth in placement of retrievable IVC filters in the past decade yet the majority of the devices are not removed. Unretrieved IVC filters have several well-known complications that increase in frequency as the filter dwell time increases. These complications include caval wall penetration, filter fracture or migration, caval thrombosis and an increased risk for lower extremity deep vein thrombosis (DVT). Difficulty is sometimes encountered when attempting to retrieve indwelling filters, mainly because of either abnormal filter positioning or endothelization of filter components that are in contact with the IVC wall, thereby causing the filter to become embedded. The length of time that a filter remains indwelling also impacts the retrieval rate, as increased dwell times are associated with more difficult retrievals. Several techniques for difficult retrievals have been described in the medical literature. These techniques range from modifications of standard retrieval techniques to much more complex interventions. Complications related to complex retrievals are more common than those associated with standard retrieval techniques. The risks of complex filter retrievals should be compared with those of life-long anticoagulation associated with an unretrieved filter, and should be individualized. This article summarizes current techniques for IVC filter retrieval from a clinical point of view, with an emphasis on advanced retrieval techniques.
Background: Multiple studies have shown that patients are susceptible to posttraumatic osteoarthritis (PTOA) after an anterior cruciate ligament (ACL) injury, even with ACL reconstruction (ACLR). Prospective studies using multivariable analysis to identify risk factors for PTOA are lacking. Purpose/Hypothesis: This study aimed to identify baseline predictors of radiographic PTOA after ACLR at an early time point. We hypothesized that meniscal injuries and cartilage lesions would be associated with worse radiographic PTOA using the Osteoarthritis Research Society International (OARSI) atlas criteria. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 421 patients who underwent ACLR returned on-site for standardized posteroanterior semiflexed knee radiography at a minimum of 2 years after surgery. The mean age was 19.8 years, with 51.3% female patients. At baseline, data on demographics, graft type, meniscal status/treatment, and cartilage status were collected. OARSI atlas criteria were used to grade all knee radiographs. Multivariable ordinal regression models identified baseline predictors of radiographic OARSI grades at follow-up. Results: Older age (odds ratio [OR], 1.06) and higher body mass index (OR, 1.05) were statistically significantly associated with a higher OARSI grade in the medial compartment. Patients who underwent meniscal repair and partial meniscectomy had statistically significantly higher OARSI grades in the medial compartment (meniscal repair OR, 1.92; meniscectomy OR, 2.11) and in the lateral compartment (meniscal repair OR, 1.96; meniscectomy OR, 2.97). Graft type, cartilage lesions, sex, and Marx activity rating scale score had no significant association with the OARSI grade. Conclusion: Older patients with a higher body mass index who have an ACL tear with a concurrent meniscal tear requiring partial meniscectomy or meniscal repair should be advised of their increased risk of developing radiographic PTOA. Alternatively, patients with an ACL tear with an articular cartilage lesion can be reassured that they are not at an increased risk of developing early radiographic knee PTOA at 2 to 3 years after ACLR.
BackgroundPrimary open-angle glaucoma is a multifactorial serious disease characterized by progressive retinal ganglion cell death and loss of visual field.ObjectivesThe purposes of this study were to investigate shear wave elastography (SWE) use in the evaluation of the optic nerve (ON) and peripapillary structures, and to compare the findings between glaucomatous and control eyes.Patients and MethodsA case-controlled study, including 21 patients with primary open-angle glaucoma and 21 age-matched control subjects, was carried out. All of the participants had comprehensive ophthalmological exams that included corneal biomechanical measurements with ocular response analyzer. In vivo evaluation of the biomechanical properties of the ON and peripapillary structures were performed with SWE in all participants. The Kolmogorov–Smirnov test was used to analyze the normal distribution of data. Differences of parameters in ophthalmologic data and stiffness values of patients with and without glaucoma were evaluated using the Mann-Whitney U test.ResultsThere were no statistically significant differences between the glaucoma and control groups in terms of age (P > 0.05) and gender (P > 0.05). Corneal hysteresis was lower in the glaucoma group (P < 0.05). Corneal compensated intraocular pressure and Goldmann correlated intraocular pressure were higher in the glaucoma group (P < 0.0001 for both). The mean stiffness of the ON and peripapillary structures were significantly higher in glaucoma patients for each measured region (P < 0.05).ConclusionThe study evaluated the biomechanical properties of the ON and peripapillary structures in vivo with SWE in glaucoma. We observed stiffer ON and peripapillary tissue in glaucomatous eyes, indicating that SWE claims new perspectives in the evaluation of ON and peripapillary structures in glaucoma disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.