We describe Shasta, a middleware system built at Google to support interactive reporting in complex user-facing applications related to Google's Internet advertising business. Shasta targets applications with challenging requirements: First, user query latencies must be low. Second, underlying transactional data stores have complex "read-unfriendly" schemas, placing significant transformation logic between stored data and the read-only views that Shasta exposes to its clients. This transformation logic must be expressed in a way that scales to large and agile engineering teams. Finally, Shasta targets applications with strong data freshness requirements, making it challenging to precompute query results using common techniques such as ETL pipelines or materialized views. Instead, online queries must go all the way from primary storage to userfacing views, resulting in complex queries joining 50 or more tables.Designed as a layer on top of Google's F1 RDBMS and Mesa data warehouse, Shasta combines language and system techniques to meet these requirements. To help with expressing complex view specifications, we developed a query language called RVL, with support for modularized view templates that can be dynamically compiled into SQL. To execute these SQL queries with low latency at scale, we leveraged and extended F1's distributed query engine with facilities such as safe execution of C++ and Java UDFs. To reduce latency and increase read parallelism, we extended F1 storage with a distributed read-only in-memory cache. The system we describe is in production at Google, powering critical applications used by advertisers and internal sales teams. Shasta has significantly improved system scalability and software engineering efficiency compared to the middleware solutions it replaced.
Google services continuously generate vast amounts of application data. This data provides valuable insights to business users. We need to store and serve these planet-scale data sets under the extremely demanding requirements of scalability, sub-second query response times, availability, and strong consistency; all this while ingesting a massive stream of updates from applications used around the globe. We have developed and deployed in production an analytical data management system, Napa, to meet these requirements. Napa is the backend for numerous clients in Google. These clients have a strong expectation of variance-free, robust query performance. At its core, Napa's principal technologies for robust query performance include the aggressive use of materialized views, which are maintained consistently as new data is ingested across multiple data centers. Our clients also demand flexibility in being able to adjust their query performance, data freshness, and costs to suit their unique needs. Robust query processing and flexible configuration of client databases are the hallmark of Napa design. Most of the related work in this area takes advantage of full flexibility to design the whole system without the need to support a diverse set of preexisting use cases. In comparison, a particular challenge we faced is that Napa needs to deal with hard constraints from existing applications and infrastructure, so we could not do a "green field" system, but rather had to satisfy existing constraints. These constraints led us to make particular design decisions and also devise new techniques to meet the challenges. In this paper, we share our experiences in designing, implementing, deploying, and running Napa in production with some of Google's most demanding applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.