F1 is a distributed relational database system built at Google to support the AdWords business. F1 is a hybrid database that combines high availability, the scalability of NoSQL systems like Bigtable, and the consistency and usability of traditional SQL databases. F1 is built on Spanner, which provides synchronous cross-datacenter replication and strong consistency. Synchronous replication implies higher commit latency, but we mitigate that latency by using a hierarchical schema model with structured data types and through smart application design. F1 also includes a fully functional distributed SQL query engine and automatic change tracking and publishing.
We describe Shasta, a middleware system built at Google to support interactive reporting in complex user-facing applications related to Google's Internet advertising business. Shasta targets applications with challenging requirements: First, user query latencies must be low. Second, underlying transactional data stores have complex "read-unfriendly" schemas, placing significant transformation logic between stored data and the read-only views that Shasta exposes to its clients. This transformation logic must be expressed in a way that scales to large and agile engineering teams. Finally, Shasta targets applications with strong data freshness requirements, making it challenging to precompute query results using common techniques such as ETL pipelines or materialized views. Instead, online queries must go all the way from primary storage to userfacing views, resulting in complex queries joining 50 or more tables.Designed as a layer on top of Google's F1 RDBMS and Mesa data warehouse, Shasta combines language and system techniques to meet these requirements. To help with expressing complex view specifications, we developed a query language called RVL, with support for modularized view templates that can be dynamically compiled into SQL. To execute these SQL queries with low latency at scale, we leveraged and extended F1's distributed query engine with facilities such as safe execution of C++ and Java UDFs. To reduce latency and increase read parallelism, we extended F1 storage with a distributed read-only in-memory cache. The system we describe is in production at Google, powering critical applications used by advertisers and internal sales teams. Shasta has significantly improved system scalability and software engineering efficiency compared to the middleware solutions it replaced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.