Purpose: To improve treatment efficacy and tumor cell selectivity of δ-aminolevulinic acid (ALA)-based photodynamic therapy (PDT) via pretreatment of cells and tumors with methotrexate to enhance intracellular photosensitizer levels. Experimental Design: Skin carcinoma cells, in vitro and in vivo, served as the model system. Cultured human SCC13 and HEK1 cells, normal keratinocytes, and in vivo skin tumor models were preconditioned with methotrexate for 72 h and then incubated with ALA for 4 h. Changes in protoporphyrin IX (PpIX) levels and cell survival after light exposure were assessed. Results: Methotrexate preconditioning of monolayer cultures preferentially increased intracellular PpIX levels 2-to 4-fold in carcinoma cells versus normal keratinocytes. Photodynamic killing was synergistically enhanced by the combined therapy compared with PDT alone. Methotrexate enhancement of PpIX levels was achieved over a broad methotrexate concentration range (0.0003-1.0 mg/L; 0.6 nmol/L-2 mmol/L). PpIX enhancement correlated with changes in protein expression of key porphyrin pathway enzymes, ∼4-fold increase in coproporphyrinogen oxidase and stable or slightly decreased expression of ferrochelatase. Differentiation markers (E-cadherin, involucrin, and filaggrin) were also selectively induced by methotrexate in carcinoma cells. In vivo relevance was established by showing that methotrexate preconditioning enhances PpIX accumulation in three models: (a) organotypic cultures of immortalized keratinocytes, (b) chemically induced skin tumors in mice; and (c) human A431 squamous cell tumors implanted subcutaneously in mice. Conclusion: Combination therapy using short-term exposure to low-dose methotrexate followed by ALA-PDT should be further investigated as a new combination modality to enhance efficacy and selectivity of PDT for epithelial carcinomas.
Allergic reactions to endoprostheses are uncommon and reported in association with orthopaedic, dental, endovascular and other implanted devices. Hypersensitivity reactions to the biomaterials used in endovascular prostheses are among the infrequent reactions that may lead to local or systemic complications following cardiovascular therapeutic interventions. This article reviews potential immunotoxic effects of commonly used biomaterials. Reports of putative hypersensitivity reactions to endovascular devices, including coronary stents, perforated foramen occluders, pacemakers and implantable cardioverter defibrillators are also reviewed.
The American Contact Dermatitis Society recognizes the interest in the evaluation and management of metal hypersensitivity reactions. Given the paucity of robust evidence with which to guide our practices, we provide reasonable evidence and expert opinion-based guidelines for clinicians with regard to metal hypersensitivity reaction testing and patient management. Routine preoperative evaluation in individuals with no history of adverse cutaneous reactions to metals or history of previous implant-related adverse events is not necessary. Patients with a clear self-reported history of metal reactions should be evaluated by patch testing before device implant. Patch testing is only 1 element in the assessment of causation in those with postimplantation morbidity. Metal exposure from the implanted device can cause sensitization, but a positive metal test does not prove symptom causality. The decision to replace an implanted device must include an assessment of all clinical factors and a thorough risk-benefit analysis by the treating physician(s) and patient.
The special interest group on sensitive skin of the International Forum for the Study of Itch previously defined sensitive skin as a syndrome defined by the occurrence of unpleasant sensations (stinging, burning, pain, pruritus and tingling sensations) in response to stimuli that normally should not provoke such sensations. This additional paper focuses on the pathophysiology and the management of sensitive skin. Sensitive skin is not an immunological disorder but is related to alterations of the skin nervous system. Skin barrier abnormalities are frequently associated, but there is no cause and direct relationship. Further studies are needed to better understand the pathophysiology of sensitive skinas well as the inducing factors. Avoidance of possible triggering factors and the use of well-tolerated cosmetics, especially those containing inhibitors of unpleasant sensations, might be suggested for patients with sensitive skin. The role of psychosocial factors, such as stress or negative expectations, might be relevant for subgroups of patients. To date, there is no clinical trial supporting the use of topical or systemic drugs in sensitive skin. The published data are not sufficient to reach a consensus on sensitive skin management. In general, patients with sensitive skin require a personalized approach, taking into account various biomedical, neural and psychosocial factors affecting sensitive skin. Emotion1.77 1. 44-2.17 Comparison between people with sensitive skin and healthy subjects. Results from a meta-analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.