We present an energy conserving space discretisation of the rotating shallow water equations using compatible finite elements. It is based on an energy and enstrophy conserving Hamiltonian formulation as described in McRae and Cotter (2014), and extends it to include upwinding in the velocity and depth advection to increase stability. Upwinding for velocity in an energy conserving context was introduced for the incompressible Euler equations in Natale and Cotter (2017), while upwinding in the depth field in a Hamiltonian finite element context is newly described here. The energy conserving property is validated by coupling the spatial discretisation to an energy conserving time discretisation. Further, the discretisation is demonstrated to lead to an improved field development with respect to stability when upwinding in the depth field is included.
We present an energy conserving space discretisation based on a Poisson bracket that can be used to derive the dry compressible Euler as well as thermal shallow water equations. It is formulated using the compatible finite element method, and extends the incorporation of upwinding for the shallow water equations as described in Wimmer, Cotter, and Bauer (2020). While the former is restricted to DG upwinding, an energy conserving SUPG method for the (partially) continuous Galerkin thermal field space is newly introduced here. The energy conserving property is validated by coupling the Poisson bracket based spatial discretisation to an energy conserving time discretisation. Further, the discretisation is demonstrated to lead to an improved thermal field development with respect to stability when upwinding is included. An approximately energy conserving scheme that includes upwinding for all prognostic fields with a smaller computational cost is also presented. In a falling bubble test case used for the Euler equations, the latter scheme is shown to resolve small scale features at coarser resolutions than a corresponding scheme derived directly from the equations without the Poisson bracket framework.
Abstract. This paper introduces a mixed finite-element shallow-water model on the sphere. The mixed finite-element approach is used as it has been shown to be both accurate and highly scalable for parallel architecture. Key features of the model are an iterated semi-implicit time-stepping scheme, a finite-volume transport scheme, and the cubed sphere grid. The model is tested on a number of standard spherical shallow-water test cases. Results show that the model produces similar results to other shallow-water models in the literature.
A resolution-independent data-driven stochastic parametrization method for subgrid-scale processes in coarsened fluid descriptions is proposed. The method enables the inclusion of high-fidelity data into the coarsened flow model, thereby enabling accurate simulations also with the coarser representation. The small-scale parametrization is introduced at the level of the Fourier coefficients of the coarsened numerical solution. It is designed to reproduce the kinetic energy spectra observed in high-fidelity data of the same system. The approach is based on a control feedback term reminiscent of continuous data assimilation. The method relies solely on the availability of high-fidelity data from a statistically steady state. No assumptions are made regarding the adopted discretization method or the selected coarser resolution. The performance of the method is assessed for the two-dimensional Euler equations on the sphere. Applying the method at two significantly coarser resolutions yields good results for the mean and variance of the Fourier coefficients. Stable and accurate large-scale dynamics can be simulated over long integration times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.