This paper presents a geometric variational discretization of compressible fluid dynamics. The numerical scheme is obtained by discretizing, in a structure preserving way, the Lie group formulation of fluid dynamics on diffeomorphism groups and the associated variational principles. Our framework applies to irregular mesh discretizations in 2D and 3D. It systematically extends work previously made for incompressible fluids to the compressible case. We consider in detail the numerical scheme on 2D irregular simplicial meshes and evaluate the scheme numerically for the rotating shallow water equations. In particular, we investigate whether the scheme conserves stationary solutions, represents well the nonlinear dynamics, and approximates well the frequency relations of the continuous equations, while preserving conservation laws such as mass and total energy.
An important open question in fluid dynamics concerns the effect of small scales in structuring a fluid flow. In oceanic or atmospheric flows, this is aptly captured in wave–current interactions through the study of the well-known Langmuir secondary circulation. Such wave–current interactions are described by the Craik–Leibovich system, in which the action of a wave-induced velocity, the Stokes drift, produces a so-called “vortex force” that causes streaking in the flow. In this work, we show that these results can be generalized as a generic effect of the spatial inhomogeneity of the statistical properties of the small-scale flow components. As demonstrated, this is well captured through a stochastic representation of the flow.
We describe an energy-enstrophy conserving discretisation for the rotating shallow water equations with slip boundary conditions. This relaxes the assumption of boundary-free domains (periodic solutions or the surface of a sphere, for example) in the energy-enstrophy conserving formulation of McRae and Cotter (2014). This discretisation requires extra prognostic vorticity variables on the boundary in addition to the prognostic velocity and layer depth variables. The energy-enstrophy conservation properties hold for any appropriate set of compatible finite element spaces defined on arbitrary meshes with arbitrary boundaries. We demonstrate the conservation properties of the scheme with numerical solutions on a rotating hemisphere. arXiv:1801.00691v3 [math.NA]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.