This paper proposes and discusses the architecture for a real-time vehicular channel emulator capable of reproducing the input/output behavior of nonstationary time-variant radio propagation channels in safety-relevant vehicular scenarios. The vehicular channel emulator architecture aims at a hardware implementation which requires minimal hardware complexity for emulating channels with the varying delay-Doppler characteristics of safety-relevant vehicular scenarios. The varying delay-Doppler characteristics require real-time updates to the multipath propagation model for each local stationarity region. The vehicular channel emulator is used for benchmarking the packet error performance of commercial off-the-shelf (COTS) vehicular IEEE 802.11p modems and a fully software-defined radio-based IEEE 802.11p modem stack. The packet error ratio (PER) estimated from temporal averaging over a single virtual drive and the packet error probability (PEP) estimated from ensemble averaging over repeated virtual drives are evaluated and compared for the same vehicular scenario. The proposed architecture is realized as a virtual instrument on National Instruments™ LabVIEW. The National Instrument universal software radio peripheral with reconfigurable input-output (USRP-Rio) 2953R is used as the software-defined radio platform for implementation; however, the results and considerations reported are of general purpose and can be applied to other platforms. Finally, we discuss the PER performance of the modem for two categories of vehicular channel models: a vehicular nonstationary channel model derived for urban single lane street crossing scenario of the DRIVEWAY’09 measurement campaign and the stationary ETSI models.
We evaluate channel hardening for a large scale antenna system by means of indoor channel measurements over four frequency bands, 1.472 GHz , 2.6 GHz , 3.82 GHz and 4.16 GHz. NTNU's Reconfigurable Radio Network Platform has been used to record the channel estimates for 40 radio links to a 64 element array with wideband antennas in a rich scattering environment. We examine metrics for channel hardening, namely, the coherence bandwidth, the rms delay spread and the normalized effective subcarrier power, for the effective channel perceived by a single user after precoding and superposition in the downlink. We describe these metrics analytically and demonstrate them with measured data in order to characterize the rate of hardening of the effective channel as the number of antenna elements at the base station increases. The metrics allow for direct insight into the benefits of channel hardening with respect to radio system requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.