In recent years, carbon dioxide hydrogenation leading to synthetic fuels and value-added molecules has been proposed as a promising technology for stabilizing anthropogenic greenhouse gas emissions. Methanation or Sabatier are possible reactions to valorize the CO2. In the present work, thermal CO2 methanation and non-thermal plasma (NTP)-assisted CO2 methanation was performed over 15Ni/CeO2 promoted with 1 and 5 wt% of cobalt. The promotion effect of cobalt is proven both for plasma and thermal reaction and can mostly be linked with the basic properties of the materials.
Quantum chemical calculations using DFT and NBO, ETS-NOCV, QTAIM and ELF interpretative approaches have been carried out on <b>X</b>-BH<sub>2</sub><sup>+</sup> borenium complexes for 39 divalent C-donor ligands <b>X</b> including various N-heterocyclic carbenes and carbones. The C-B bond length and the barrier of rotation around the C-B bond were calculated and compared with various descriptors of the C-B pi-bond strength obtained from the orbital localization, energy partitioning or topological methods. Two families of descriptors emerged: <i>intrinsic</i> indicators, which measure the intensity of the pi-bond in the investigated molecule, and <i>relative</i> indicators, among them the rotational barrier, which compare the studied molecule with its conformer in which the pi-interaction is prevented. <i>Relative</i> indicators are influenced by other interactions in addition to purely pi-interactions. For both families of descriptors, excellent correlations are obtained, showing that the interpretative methods, despite their conceptual differences, describe the same chemical properties. These results also reveal noticeable shortcomings in these methods, and some precautions that need to be taken to interpret their results adequately.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.