By convention, presentation of major histocompatibility complex (MHC) class I-restricted epitopes involves processing by cytosolic proteasomes, whereas MHC class II-restricted epitopes are generated by endosomal proteases. Here, we show that two MHC class II-restricted epitopes within influenza virus were generated by a proteasome- and TAP-dependent pathway that was accessed by exogenous virus in dendritic cells (DCs) but not cell types with less permeable endosomes. Both epitopes were presented by recycling MHC class II molecules. Challenging mice with influenza or vaccinia viruses demonstrated that a substantial portion of the MHC class II-restricted response was directed against proteasome-dependent epitopes. By complementing endosomal activities, this pathway broadens the array of MHC class II-restricted epitopes available for CD4(+) T cell activation.
We investigated the roles of nascent and recycling MHC class II molecules (MHC II) in the presentation of two well-defined I-Ed-restricted epitopes that are within distinct regions of the influenza virus hemagglutinin (HA) protein. The site 3 epitope (S3; residues 302–313) lies in the stalk region that unfolds in response to mild acidification, while the site 1 epitope (S1; residues 107–119) is situated in the stable globular domain. In a murine B lymphoma cell line and an I-Ed-transfected fibroblast cell line, presentation from inactivated virus of S3 is inhibited by primaquine, a compound that prevents recycling of cell surface proteins, including MHC II, while S1 presentation is unaffected. In contrast, brefeldin A, an agent that inhibits exit of proteins from the endoplasmic reticulum, selectively inhibited S1 presentation without affecting S3 presentation, suggesting that S1 presentation requires nascent MHC II. The use of agents that perturb endosomal function revealed a requirement for acidification of internalized viral particles for presentation of both epitopes. Notably, all compounds tested had similar effects on presentation of the two epitopes derived from endogenously synthesized HA. Thus, recycling I-Ed molecules appear to be crucial for capturing and presenting an epitope that is revealed in mild acidic conditions following the uptake of virions or the synthesis of Ag, while nascent I-Ed molecules are required for presentation of a second epitope located in a structurally constrained region of the same polypeptide. Viral glycoproteins, such as HA, may have been a major impetus for the evolutionary establishment of this recycling pathway.
The molecular changes that restrict multipotent murine thymocytes to the T cell lineage and render them responsive to Ag receptor signals remain poorly understood. In this study, we report our analysis of the role of the Ets transcription factor, Spi-B, in this process. Spi-B expression is acutely induced coincident with T cell lineage commitment at the CD4−CD8−CD44−CD25+ (DN3) stage of thymocyte development and is then down-regulated as thymocytes respond to pre-TCR signals and develop beyond the β-selection checkpoint to the CD4−CD8−CD44−CD25− (DN4) stage. We found that dysregulation of Spi-B expression in DN3 thymocytes resulted in a dose-dependent perturbation of thymocyte development. Indeed, DN3 thymocytes expressing approximately five times the endogenous level of Spi-B were arrested at the β-selection checkpoint, due to impaired induction of Egr proteins, which are important molecular effectors of the β-selection checkpoint. T lineage-committed DN3 thymocytes expressing even higher levels of Spi-B were diverted to the dendritic cell lineage. Thus, we demonstrate that the prescribed modulation of Spi-B expression is important for T lineage commitment and differentiation beyond the β-selection checkpoint; and we provide insight into the mechanism underlying perturbation of development when that expression pattern is disrupted.
In light of lack of efficacy associated with current cancer vaccines, we aimed to develop a novel vaccine platform called DepoVax as a therapeutic vaccine for breast/ovarian cancer. This study was designed to examine the efficacy of this novel platform over conventional emulsion vaccine using human class I MHC transgenic mice. We have developed a water-free depot vaccine formulation (DPX-0907) with high immune activating potential. Naturally processed peptides bound to HLA-A2 molecules isolated from independent breast and ovarian tumor cell lines, but not normal cells, were isolated and used as antigens in DPX-0907 along with a proprietary adjuvant and a T helper peptide epitope. Efficacy of vaccine was tested in immunized HLA-A*0201/H2Dd transgenic mice by measuring the frequency of IFN-gamma secreting cells in the draining lymph nodes, and regulatory T-cell frequencies in the spleen. Compared with a water-in-oil emulsion vaccine, DPX-0907 enhanced IFN-gamma+CD8+ T cells in vaccine site-draining lymph nodes, as seen by immunofluorescence staining and increased the frequency of IFN-gamma+ lymph node cells as seen by enzyme-linked immunosorbent spot assay. Notably, while conventional vaccine formulations elicited elevated levels of splenic Foxp3+CD4+ and IL10-secreting T cells, this was not the case for DPX-0907-based vaccines, with treated animals exhibiting normal levels of regulatory T cells. These data support the unique capabilities of a vaccine formulation containing novel tumor peptides and DPX-0907 to elicit type-1 dominated, specific immunity that may represent a potent clinical therapeutic modality for patients with breast or ovarian carcinoma.
Dengue fever and dengue hemorrhagic fever are significant global public health problems, and understanding the overall immune response to infection will contribute to appropriate management of the disease and its potentially severe complications. Live attenuated and subunit vaccine candidates, which are under clinical evaluation, induce primarily an antibody response to the virus and minimal cross-reactive T-cell responses. Currently, there are no available tools to assess protective T-cell responses during infection or after vaccination. In this study, we utilize an immunoproteomics process to uncover novel HLA-A2-specific epitopes derived from dengue virus (DV)-infected cells. These epitopes are conserved, and we report that epitope-specific cytotoxic lymphocytes (CTLs) are cross-reactive against all 4 DV serotypes. These epitopes have potential as new informational and diagnostic tools to characterize T-cell immunity in DV infection and may serve as part of a universal vaccine candidate complementary to current vaccines in trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.