Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. Understanding the mutation processes that shape strand asymmetry is essential for comprehensive knowledge of genome evolution, demographical population history and accurate phylogenetic inference. Previous studies found that the relative contributions of different substitution types to strand asymmetry are associated with replication alone or both replication and transcription. However, the relative contributions of replication and transcription to strand asymmetry remain unclear. Here we conducted a broad survey of strand asymmetry across 120 insect mitochondrial genomes, with special reference to the correlation between the signs of skew values and replication orientation/gene direction. The results show that the sign of GC skew on entire mitochondrial genomes is reversed in all species of three distantly related families of insects, Philopteridae (Phthiraptera), Aleyrodidae (Hemiptera) and Braconidae (Hymenoptera); the replication-related elements in the A+T-rich regions of these species are inverted, confirming that reversal of strand asymmetry (GC skew) was caused by inversion of replication origin; and finally, the sign of GC skew value is associated with replication orientation but not with gene direction, while that of AT skew value varies with gene direction, replication and codon positions used in analyses. These findings show that deaminations during replication and other mutations contribute more than selection on amino acid sequences to strand compositions of G and C, and that the replication process has a stronger affect on A and T content than does transcription. Our results may contribute to genome-wide studies of replication and transcription mechanisms.
BackgroundPlant-pathogenic begomoviruses have a complex association with their insect vectors. The interactions of begomoviruses and reproduction of their vectors are poorly understood. Bemisia tabaci is known to transmit many begomoviruses, and the spread of B. tabaci, especially the B and Q ‘biotypes’, has been accompanied by the epidemics of begomoviruses. One of these identified disease-causing agents was Tomato yellow leaf curl China virus (TYLCCNV).Methodology/Principal FindingsIn this study, we compared the egg production and realized fecundity of two ‘biotypes’ or putative species of the whitefly B. tabaci, including the alien invasive B and the indigenous ZHJ1 from Zhejiang, China, feeding on either healthy or TYLCCNV-infected tobacco plants. The ovary of the whitefly was composed of 12–22 telotrophic ovarioles. According to the morphology of the oocytes and level of yolk content, oocytes in ovarioles were divided into four developmental phases (I-IV). Significantly higher proportion of immature oocytes (phase II, III) and mature oocytes (phase IV) was observed in ovary of females that fed on TYLCCNV-infected tobacco compared to that on healthy plants. Moreover, there was significant increase of eggs laid of B whitefly that fed on TYLCCNV-infected tobacco plants during the early developmental stages. In contrast, the proportion of oocytes of different developmental phases and eggs laid had no significant differences between ZHJ1 whiteflies feeding on TYLCCNV-infected and non-infected host plants.Conclusions/SignificanceThe invasive B whitefly benefits from feeding on a begomovirus-infected plant through increased egg production and realized fecundity.
BackgroundThe MEAM1 (B biotype) Bemisia tabaci (Gennadius) is one of the most widespread and damaging whitefly cryptic species. Our previous studies discovered that the MEAM1 whitefly indirectly benefits from interactions with the tomato yellow leaf curl China virus (TYLCCNV) via accelerated ovarian development and increased fecundity. However, the physiological mechanism of begomoviruse-infected plants acting on the reproduction of the insect vector was unknown.Methodology/Principal FindingsBiochemical and molecular properties of vitellogenin (Vg) and vitellin (Vt) were characterized in the MEAM1 whitefly. In addition, kinetics of Vt levels in ovary and Vg levels in hemolymph in different stages were detected using a sandwich ELISA. The level of hemolymph Vg increased rapidly after eclosion. A significantly higher level of hemolymph Vg and ovary Vt were observed in whiteflies feeding on virus-infected tobacco plants than those feeding on uninfected plants. In order to detect the levels of Vg mRNA transcription, complete vitellogenin (Vg) mRNA transcripts of 6474 bp were sequenced. Vg mRNA level in whiteflies feeding on virus-infected plants was higher than those feeding on uninfected plants. However, virus-infection of the whiteflies per se, as demonstrated using an artificial diet system, did not produce significant changes in Vg mRNA level.Conclusions/SignificanceIn MEAM1 whitefly, increased levels of both vitellin and vitellogenin as well as increased transcription of Vg mRNA are associated with feeding on begomovirus-infected plants, thus providing a mechanism for accelerated vitellogenesis. We conclude that MEAM1 whitefly profits from feeding on begomovirus-infected plants for yolk protein synthesis and uptake, and thereby increases its fecundity. These results not only provide insights into the molecular and physiological mechanisms underlying the elevated reproduction of a whitefly species through its association with a begomovirus-infected plant, but also provide a better understanding of the molecular mechanisms related to whitefly reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.