The unavoidable increase in train speed and load, as well as the aging of railway facilities, is requiring more and more attention to rail defects detection. As a promising tool for rail, in-service high-speed inspection, guided wave–based detection technologies have been developed in succession by researches in the past two decades. However, there is a lack of a systematic review on the developments and performances of these technologies. This article reviews ultrasonic rail inspection methods comprehensively with the focus on the state-of-the-art technologies based on guided wave. Different excitation options, including train wheel, electromagnetic acoustic transducer, pulsed laser, air-coupled, and contact piezoelectric transducer, are described, respectively, along with their inspection sensitivities, regions, and potential speeds. Finally, future challenges and prospects are discussed to a certain extent to provide references for researchers in this area.
Due to the atmospheric temperature and solar radiation, the effects of temperature variation in bridge structures should be considered. Such variation induces notable deformations and movements, jeopardizing the safety of bridges and high-speed trains operations. However, the temperature action is a random process and its distribution is difficult to determine. The existing methods for analyzing structural temperatures are insufficient to meet the precision requirement. Therefore, the accurate prediction of extreme structural temperatures relates to the accurate evaluation on the bridge safety. This paper proposes a robust and accurate model for predicting the extreme structural temperature of a bridge. A field experiment, spanning over 2 years, was carried out on a high-speed railway bridge; and the long-term (56-years) atmospheric temperature data was adopted. Probabilistic models for the structural temperature were established using the Maximum Entropy (MaxEnt) model and the Generalized Pareto distribution (GPD) model; and the predictions on the uniform structural temperature ( T u) with 50 and 100 years return periods are presented. Additionally, the performance between the MaxEnt model and the GPD model is compared, based on the estimates with different return levels. The results show that the MaxEnt model is more stable and is significantly robust to the variation of sample sizes; and indicates that the MaxEnt model reduces the uncertainty of outcomes and avoids the high risk of bias. The MaxEnt model has a great potential to the applications of the extreme value analysis with small sample size. It offers a wider applicability and helps solve practical problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.