Hygroresponsive biomimetic actuators that convert chemical potential energy contained within the humidity gradient into mechanical deformation are of particular significance for realizing a sustainable society.
In this paper, we propose a comprehensive Polar coding solution that integrates reliability calculation, rate matching and parity-check coding. Judging a channel coding design from the industry's viewpoint, there are two primary concerns: (i) low-complexity implementation in applicationspecific integrated circuit (ASIC), and (ii) superior & stable performance under a wide range of code lengths and rates. The former provides cost-& power-efficiency which are vital to any commercial system; the latter ensures flexible and robust services. Our design respects both criteria. It demonstrates better performance than existing schemes in literature, but requires only a fraction of implementation cost. With easilyreproducible code construction for arbitrary code rates and lengths, we are able to report "1-bit" fine-granularity simulation results for thousands of cases. The released results can serve as a baseline for future optimization of Polar codes. 1
Self-healing hydrogels like tissues or organs which are repaired automatically in response to damage show great promise. However, it remains a challenge to develop novel functional nanoparticles as crosslinkers to prepare tough and self-healing nanocomposite hydrogels. Here, we report the preparation of water-soluble ultrasmall aluminum hydroxide nanoparticles with a diameter of 2-3 nm through a simple sol-gel method. Furthermore, a tough nanocomposite hydrogel is prepared by the in situ copolymerization of acylamide and 2-acrylamido-2-methyl propane sulfonic acid in the presence of aluminum hydroxide nanoparticles. The resulting hydrogels exhibit high compressive strength of 18.9 MPa and an elongation at break of ∼2100%. Importantly, the Al-NC gel displayed a high self-healing efficiency of 86% without any external stimulus at room temperature. Moreover, we found an interesting multi-hierarchical porous morphology of the Al-NC gel depending on the contents of the aluminum hydroxide nanoparticles. The tough nanocomposite hydrogel might provide a novel promising avenue for designing advanced self-healable soft materials for various biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.