Repair of bone deficiencies in the craniofacial skeleton remains a challenging clinical problem. The aim of this study was to evaluate and compare the effects of a plasma-derived albumin scaffold, alveolar osteoblasts and synthetic membrane implanted into experimental mandibular defects. Bilateral mandibular defects were created in twelve immunodeficient rats. The bone defect was filled with serum scaffold alone in left sides and scaffold combined with human alveolar osteoblast in right side defects. Implanted areas were closed directly in Group 1 ( n = 6) and covered by a resorbable polyglycolic-polylactic acid membrane in Group 2 ( n = 6). Bone regeneration was determined at 12 weeks as measured by and exhaustive multiplanar computed tomography analysis and histological examination. No significant differences in bone density were observed between defects transplanted with scaffold alone or scaffold seeded with osteoblasts. The use of membrane did not result in a determining factor in the grade of bone regeneration between Groups 1 and 2. Based on these results, it could be concluded that the albumin scaffold alone has osteoinductive capacity but presence of seeded ostogenic cells accelerates defect repair without being significantly influenced by covering the defect with a resorbable membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.