Proteins of the Bcl-2 family are intracellular membrane-associated proteins that regulate programmed cell death (apoptosis) either positively or negatively by as yet unknown mechanisms. Bax, a pro-apoptotic member of the Bcl-2 family, was shown to form channels in lipid membranes. Bax triggered the release of liposome-encapsulated carboxyfluorescein at both neutral and acidic pH. At physiological pH, release could be blocked by Bcl-2. Bcl-2, in contrast, triggered carboxyfluorescein release at acidic pH only. In planar lipid bilayers, Bax formed pH- and voltage-dependent ion-conducting channels. Thus, the pro-apoptotic effects of Bax may be elicited through an intrinsic pore-forming activity that can be antagonized by Bcl-2.
Bcl-2 family members either promote or repress programmed cell death. Bax, a death-promoting member, is a pore-forming, mitochondria-associated protein whose mechanism of action is still unknown. During apoptosis, cytochrome C is released from the mitochondria into the cytosol where it binds to APAF-1, a mammalian homologue of Ced-4, and participates in the activation of caspases. The release of cytochrome C has been postulated to be a consequence of the opening of the mitochondrial permeability transition pore (PTP). We now report that Bax is sufficient to trigger the release of cytochrome C from isolated mitochondria. This pathway is distinct from the previously described calcium-inducible, cyclosporin A–sensitive PTP. Rather, the cytochrome C release induced by Bax is facilitated by Mg2+ and cannot be blocked by PTP inhibitors. These results strongly suggest the existence of two distinct mechanisms leading to cytochrome C release: one stimulated by calcium and inhibited by cyclosporin A, the other Bax dependent, Mg2+ sensitive but cyclosporin insensitive.
Immunoglobulin E (IgE) is central to the induction of allergic diseases through its binding to the high-affinity receptor (Fc epsilon R1) on mast cells and basophils. Crosslinking by allergens of the bound IgE leads to the release of various inflammatory mediators. IgE production by B cells requires a physical interaction with T cells, involving a number of surface adhesion molecules, as well as the soluble factors interleukin-4 (IL-4) and IL-13 (ref. 5) produced by T cells, basophils and mast cells. Here we report that, in the presence of IL-4, mast and basophilic cell lines can provide the cell contact signals that are required for IgE synthesis. The human cell lines HMC-1 (mast) and KU812 (basophilic) both express the ligand for CD40 (CD40L) which is shown to be responsible for the IgE production. Moreover, freshly isolated purified human lung mast cells and blood basophils are also shown to express CD40L and to induce IgE production. This evidence suggests that mast cells and basophils may therefore play a key role in allergy not only by producing inflammatory mediators, but also by directly regulating IgE production independently of T cells.
CD40 ligand (CD40L) is expressed on the surface of activated CD4+ T cells, basophils, and mast cells. Binding of C40L to its receptor, CD40, on the surface of B cells stimulates B cell proliferation, adhesion and differentiation. A preparation of soluble, recombinant CD40L (Tyr-45 to Leu-261), containing the full-length 29-kDa protein and two smaller fragments of 18 and 14 kDa, has been shown to induce differentiation of B cells derived either from normal donors or from patients with X-linked hyper-IgM syndrome (Durandy, A., Schiff, C., Bonnefoy, J.-Y., Forveille, M., Rousset, F., Mazzei, G., Milili, M., and Fischer, A. (1993) Eur. J. Immunol. 23, 2294-2299). We have now purified each of these fragments to homogeneity and show that only the 18-kDa fragment (identified as Glu-108 to Leu-261) is biologically active. When expressed in recombinant form, the 18-kDa protein exhibited full activity in B cell proliferation and differentiation assays, was able to rescue of B cells from apoptosis, and bound soluble CD40. Sucrose gradient sedimentation shows that the 18-kDa protein sediments as an apparent homotrimer, a result consistent with the proposed trimeric structure of CD40L. This demonstrates that a soluble CD40L can stimulate CD40 in a manner indistinguishable from the membrane-bound form of the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.