We have used comparative genomics to identify 26 Escherichia coli open reading frames that are both of unknown function (hypothetical open reading frames or y-genes) and conserved in the compact genome of Mycoplasma genitalium. Not surprisingly, these genes are broadly conserved in the bacterial world. We used a markerless knockout strategy to screen for essential E. coli genes. To verify this phenotype, we constructed conditional mutants in genes for which no null mutants could be obtained. In total we identified six genes that are essential for E. coli (yhbZ, ygjD, ycfB, yfil, yihA, and yjeQ). The respective orthologs of the genes yhbZ, ygjD, ycfB, yjeQ, and yihA are also essential in Bacillus subtilis. This low number of essential genes was unexpected and might be due to a characteristic of the versatile genomes of E. coli and B. subtilis that is comparable to the phenomenon of nonorthologous gene displacement. The gene ygjD, encoding a sialoglycoprotease, was eliminated from a minimal genome computationally derived from a comparison of the Haemophilus influenzae and M. genitalium genomes. We show that ygjD and its ortholog ydiE are essential in E. coli and B. subtilis, respectively. Thus, we include this gene in a minimal genome. This study systematically integrates comparative genomics and targeted gene disruptions to identify broadly conserved bacterial genes of unknown function required for survival on complex media.
CD40 ligand (CD40L) is expressed on the surface of activated CD4+ T cells, basophils, and mast cells. Binding of C40L to its receptor, CD40, on the surface of B cells stimulates B cell proliferation, adhesion and differentiation. A preparation of soluble, recombinant CD40L (Tyr-45 to Leu-261), containing the full-length 29-kDa protein and two smaller fragments of 18 and 14 kDa, has been shown to induce differentiation of B cells derived either from normal donors or from patients with X-linked hyper-IgM syndrome (Durandy, A., Schiff, C., Bonnefoy, J.-Y., Forveille, M., Rousset, F., Mazzei, G., Milili, M., and Fischer, A. (1993) Eur. J. Immunol. 23, 2294-2299). We have now purified each of these fragments to homogeneity and show that only the 18-kDa fragment (identified as Glu-108 to Leu-261) is biologically active. When expressed in recombinant form, the 18-kDa protein exhibited full activity in B cell proliferation and differentiation assays, was able to rescue of B cells from apoptosis, and bound soluble CD40. Sucrose gradient sedimentation shows that the 18-kDa protein sediments as an apparent homotrimer, a result consistent with the proposed trimeric structure of CD40L. This demonstrates that a soluble CD40L can stimulate CD40 in a manner indistinguishable from the membrane-bound form of the protein.
A general method for understanding the mechanisms of ligand recognition and activation of G protein-coupled receptors has been developed. A study of ligandreceptor interactions in the prototypic seven-transmembrane neurokinin-2 receptor (NK2) using this fluorescence-based approach is presented. A fluorescent unnatural amino acid was introduced at known sites into NK2 by suppression of UAG nonsense codons with the aid of a chemically misacylated synthetic tRNA specifically designed for the incorporation of unnatural amino acids during heterologous expression in Xenopus oocytes. Fluorescence-labeled NK2 mutants containing an unique 3-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-2,3-diaminopropionic acid (NBD-Dap) residue at either site 103, in the first extracellular loop, or 248, in the third cytoplasmic loop, were functionally active. The fluorescent NK2 mutants were investigated by microspectrofluorimetry in a native membrane environment. Intermolecular distances were determined by measuring the fluorescence resonance energy transfer (FRET) between the fluorescent unnatural amino acid and a fluorescently labeled NK2 heptapeptide antagonist. These distances, calculated by the theory of Fö rster, permit to fix the ligand in space and define the structure of the receptor in a molecular model for NK2 ligand-receptor interactions. Our data are the first report of the incorporation of a fluorescent unnatural amino acid into a membrane protein in intact cells by the method of nonsense codon suppression, as well as the first measurement of experimental distances between a G proteincoupled receptor and its ligand by FRET. The method presented here can be generally applied to the analysis of spatial relationships in integral membrane proteins such as receptors or channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.