Environmentally induced alterations in the commensal microbiota have been implicated in the increasing prevalence of food allergy. We show here that sensitization to a food allergen is increased in mice that have been treated with antibiotics or are devoid of a commensal microbiota. By selectively colonizing gnotobiotic mice, we demonstrate that the allergy-protective capacity is conferred by a Clostridia-containing microbiota. Microarray analysis of intestinal epithelial cells from gnotobiotic mice revealed a previously unidentified mechanism by which Clostridia regulate innate lymphoid cell function and intestinal epithelial permeability to protect against allergen sensitization. Our findings will inform the development of novel approaches to prevent or treat food allergy based on modulating the composition of the intestinal microbiota.microbiome | barrier | IL-22
TGF-beta induces vascular endothelial growth factor (VEGF), a potent angiogenic factor, at the transcriptional and protein levels in mouse macrophages. VEGF secretion in response to TGF-beta1 is enhanced by hypoxia and by overexpression of Smad3/4 and hypoxia-inducible factor-1alpha/beta (HIF-1alpha/beta). To examine the transcriptional regulation of VEGF by TGF-beta1, we constructed mouse reporters driven by the VEGF promoter. Overexpression of HIF-1alpha/beta or Smad3/4 caused a slight increase of VEGF promoter activity in the presence of TGF-beta1, whereas cotransfection of HIF-1alpha/beta and Smad3/4 had a marked effect. Smad2 was without effect on this promoter activity, whereas Smad7 markedly reduced it. Analysis of mutant promoters revealed that the one putative HIF-1 and two Smad-binding elements were critical for TGF-beta1-induced VEGF promoter activity. The relevance of these elements was confirmed by chromatin immunoprecipitation assay. p300, which has histone acetyltransferase activity, augmented transcriptional activity in response to HIF-1alpha/beta and Smad3/4, and E1A, an inhibitor of p300, inhibited it. TGF-beta1 also increased the expression of fetal liver kinase-1 (Flk-1), a major VEGF receptor, and TGF-beta1 and VEGF stimulated pro-matrix metalloproteinase 9 (MMP-9) and active-MMP-9 expression, respectively. The results from the present study indicate that TGF-beta1 can activate mouse macrophages to express angiogenic mediators such as VEGF, MMP-9, and Flk-1.
The present study demonstrates that RA has activity of an IgA switch factor and is more specific than TGF-β1. RA independently caused only IgA switching, whereas TGF-β1 caused IgA and IgG2b switching. We found that RA increased IgA production and that this was a result of its ability to increase the frequency of IgA-secreting B cell clones. Increased IgA production was accompanied by an increase of GLTα. RA activity was abrogated by an antagonist of the RAR. Additionally, RA affected intestinal IgA production in mice. Surprisingly, RA, in combination with TGF-β1, notably enhanced not only IgA production and GLTα expression but also CCR9 and α4β7 expression on B cells. These results suggest that RA selectively induces IgA isotype switching through RAR and that RA and TGF-β have important effects on the overall gut IgA antibody response.
Innate lymphoid cells (ILCs) are important regulators of early infection at mucosal barriers. ILCs are divided into three groups based on expression profiles, and are activated by cytokines and neuropeptides. Yet, it remains unknown if ILCs integrate other signals in providing protection. We show that signaling through herpes virus entry mediator (HVEM), a member of the tumor necrosis factor (TNF) receptor superfamily, in ILC3 is important for host defense against oral infection with the bacterial pathogen Yersinia enterocolitica. HVEM stimulates protective interferon-γ (IFN-γ) secretion from ILCs, and mice with HVEM-deficient ILC3 exhibit reduced IFN-γ production, higher bacterial burdens and increased mortality. In addition, IFN-γ production is critical as adoptive transfer of wild-type but not IFN-γ-deficient ILC3 can restore protection to mice lacking ILCs. We identify the TNF superfamily member, LIGHT, as the ligand inducing HVEM signals in ILCs. Thus HVEM signaling mediated by LIGHT plays a critical role in regulating ILC3-derived IFN-γ production for protection following infection. VIDEO ABSTRACT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.