The aim of this study was to prepare and characterize biodegradable scaffolds of poly(lactic-co-glycolic acid) (PLGA 85:15) and nano-hydroxyapatite (HA) containing magnesium carbonate (MC) as acidic microclimate controlling additive. Porous and nonporous scaffolds of PLGA 85:15 and nano-HA containing MC were prepared by solvent casting and particulate leaching method. Scaffolds were degraded at pH 7.4 phosphate buffer for 90 days. At regular intervals, pH of the degradation medium, release of degradation products, mass loss, water sorption, and tensile strength were measured. The results showed that the pH of the degradation medium significantly decreased with control specimens, whereas the scaffolds with MC did not show significant changes. In addition, acidic monomer release from the scaffolds with MC was found to be less, whereas the water sorption was found to be significantly higher. The tensile strength of the scaffold was found to be dependent on the concentration of HA and porosity. These results indicate that incorpora-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.