OBJECTIVETo evaluate the effects of the petroleum ether extract of Cissus quadrangularis on the proliferation rate of bone marrow mesenchymal stem cells, the differentiation of marrow mesenchymal stem cells into osteoblasts (osteoblastogenesis) and extracellular matrix calcification. This study also aimed to determine the additive effect of osteogenic media and Cissus quadrangularis on proliferation, differentiation and calcification.METHODSMSCs were cultured in media with or without Cissus quadrangularis for 4 weeks and were then stained for alkaline phosphatase. Extracellular matrix calcification was confirmed by Von Kossa staining. marrow mesenchymal stem cells cultures in control media and osteogenic media supplemented with Cissus quadrangularis extract (100, 200, 300 μg/mL) were also subjected to a cell proliferation assay (MTT).RESULTSTreatment with 100, 200 or 300 μg/mL petroleum ether extract of Cissus quadrangularis enhanced the differentiation of marrow mesenchymal stem cells into ALP-positive osteoblasts and increased extracellular matrix calcification. Treatment with 300 μg/mL petroleum ether extract of Cissus quadrangularis also enhanced the proliferation rate of the marrow mesenchymal stem cells. Cells grown in osteogenic media containing Cissus quadrangularis exhibited higher proliferation, differentiation and calcification rates than did control cells.CONCLUSIONThe results suggest that Cissus quadrangularis stimulates osteoblastogenesis and can be used as preventive/ alternative natural medicine for bone diseases such as osteoporosis.
Objectives. Aluminium, a neurotoxic agent in humans, has been implicated in the pathogenesis of neurodegenerative disorders. In this study, we examined the behavioral and biochemical effects of aluminium in rats with special emphasis on memory centres, namely, hippocampus and frontal cortex. Further, the effect of simvastatin treatment on aluminium intoxication was evaluated. Methods. Rats were exposed to aluminium chloride (AlCl3) for 60 days. Simvastatin (10 mg/kg/p.o.) and rivastigmine (1 mg/kg/p.o.) were administered daily prior to AlCl3. Behavioral parameters were assessed using Morris water maze test and actophotometer followed by biochemical investigations, namely, acetylcholinesterase (AChE) activity, TNF-α level, antioxidant enzymes (GSH, catalase), lipid peroxidation, and nitrite level in hippocampus and frontal cortex. Triglycerides, total cholesterol, LDL, and HDL levels in serum were also determined. Key Findings. Simvastatin treatment improved cognitive function and locomotor activity in rats. Simvastatin reversed hyperlipidemia and significantly rectified the deleterious effect of AlCl3 on AChE activity. Further, in hippocampus and frontal cortex, aluminium-induced elevation in nitrite and TNF-α and reduction in antioxidant enzymes were inhibited by simvastatin. Conclusion. To conclude, the present study suggests that simvastatin per se protects the neurons in hippocampus and frontal cortex from AlCl3, an environmental toxin.
Insulin is a cytokine which promotes cell growth. Recently, a few published reports on insulin in different cell lines support the antiapoptotic effect of insulin. But the reports fail to explain the role of insulin in modulating glutamate-mediated neuronal cell death through excitotoxicity. Thus, we examined the neuroprotective effect of insulin on glutamate-induced toxicity on differentiated SH-SY5Y neuronal cells. Changes in cell viability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) based assay, while apoptotic damage was detected by acridine orange/ethidium bromide and Hoechst staining. Intracellular reactive oxygen species (ROS) accumulation and morphological alterations were also measured. Treatment with glutamate induced apoptosis, elevated ROS levels and caused damage to neurons. Insulin was able to attenuate the glutamate-induced excitotoxic damage to neuronal cells.
The increasing incidence of postmenopausal osteoporosis and its related fractures have become global health issues in the recent days. Postmenopausal osteoporosis is the most frequent metabolic bone disease; it is characterized by a rapid loss of mineralized bone tissue. Hormone replacement therapy has proven efficacious in preventing bone loss but not desirable to many women due to its side-effects. Therefore we are in need to search the natural compounds for a treatment of postmenopausal symptoms in women with no toxic effects. In the present study, we have evaluated the effect of petroleum-ether extract of Cissus quadrangularis Linn. (CQ), a plant used in folk medicine, on an osteoporotic rat model developed by ovariectomy. In this experiment, healthy female Wistar rats were divided into four groups of six animals each. Group 1 was sham operated. All the remaining groups were ovariectomized. Group 2 was fed with an equivolume of saline and served as ovariectomized control (OVX). Groups 3 and 4 were orally treated with raloxifene (5.4 mg/kg) and petroleum-ether extract of CQ (500 mg/kg), respectively, for 3 months. The findings were assessed on the basis of animal weight, morphology of femur, and histochemical localization of alkaline phosphatase (ALP) (an osteoblastic marker) and tartrate-resistant acid phosphatase (TRAP) (an osteoclastic marker) in upper end of femur. The study revealed for the first time that the petroleum-ether extract of CQ reduced bone loss, as evidenced by the weight gain in femur, and also reduced the osteoclastic activity there by facilitating bone formation when compared to the OVX group. The osteoclastic activity was confirmed by TRAP staining, and the bone formation was assessed by ALP staining in the femur sections. The color intensity of TRAP and ALP enzymes from the images were evaluated by image analysis software developed locally. The effect of CQ was found to be effective on both enzymes, and it might be a potential candidate for prevention and treatment of postmenopausal osteoporosis. The biological activity of CQ on bone may be attributed to the phytogenic steroids present in it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.