Nowadays, CNTFET introduced the complexity of SRAM design along with the stability. To overcome these complexities, an enhanced Gate Diffusion Input technique-based Ballistic wrap gate CNTFET (EGDI-BWGCNTFET) technology with ternary static random-access memory (T-SRAM) is proposed in this paper. The aim of the proposed technique is “to give higher stability with less stagnant power consumption, voltage drop and store appropriate read/write value of the SRAM cells”. Here, level shift 5T ternary SRAM cell design using Enhanced Gate Diffusion Input Ballistic wrap gate CNTFET (level shift EGDI-BWGCNTFET 5T-ternary SRAM) is proposed for improving read and write stability. It uses two cross-coupled EGDI-BWGCNTFET ternary inverter, which is used for data storage elements along with one access transistor which is connected with bit line (BL) and word line (WL) with minimum supply voltage resulting in leakage current that is decreased. By this, proposed method reduces delay in the write cycles and read cycles. It provides good read static noise margin (RSNM) and controls precharge voltage. The proposed level shift EGDI-BWGCNTFET 5T-ternary SRAM is done in HSPICE platform. The performance of the proposed level shift EGDI-BWGCNTFET 5T-ternary SRAM design is measured in terms of lower Read Delay 23.25%, 22.94%, 18.38%, 23.97%, lower Write Delay 33.92%, 28.94%, 42.83%, 31.98% compared with the existing methods, such as 8T CNTFET-Ternary SRAM, 24T CNTFET-2Ternary SRAM, 18T CNTFET-Ternary SRAM and 17T CNTFET-Ternary SRAM, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.