Markers of inflammation and T2DM. Plasma levels of obesity/T2DM related markers [Interleukin 6 (IL-6), C-peptide, Glucagon, Insulin, Leptin, Plasminogen Activator Inhibitor-1 (PAI-1), Resistin, Visfatin, Ghrelin, Glucose-dependent Insulinotropic Polypeptide (GIP), Glucagon-like peptide-1 (GLP-1), and Adiponectin] were measured using Bio-Plex Pro Human Diabetes Assay panel, Bio-Rad, following the manufacturer's protocol 18. A detailed protocol is provided with supplementary materials. plasma sample preparation and metabolomics analysis. An Ultra-Performance Liquid Chromatography, ACQUITY UPLC System (Waters) coupled to a Quadrupole-Time of Flight (Q-TOF) mass spectrometer (SYNAPT-G2 HDMS, Waters) was used for untargeted metabolomics analysis. An analytical batch comprised of equal number of samples from all the study groups and their run order was randomized within a batch. The Quality control samples were prepared by pooling equal volume of aliquots from all the samples. QC samples were analyzed after every 5 th sample run. The features detected in <50% of the QC samples and <20% of the experimental samples were removed to exclude metabolites with poor repeatability in the metabolomics data. After normalization, features with a relative standard deviation of <30% in the QC samples were used for further statistical analysis. Detailed sample preparation, liquid chromatography, and tandem mass spectrometry protocol, data transformations, and metabolite identification are provided with the supplementary materials.
The variations in the protein profile of aortic-valvular (AVE) and endocardial endothelial (EE) cells are currently unknown. The current study’s objective is to identify differentially expressed proteins and associated pathways in both the endothelial cells. We used endothelial cells isolated from the porcine (Sus scrofa) aortic valve and endocardium for the profiling of proteins. Label-free proteomics was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our proteomics analysis revealed that 29 proteins were highly expressed, and 25 proteins were less expressed in the valve than the endocardial endothelium. The cell surface markers, such as CD63, ICAM1, PECAM1, PROCR, and TFRC, were highly expressed in EE. In contrast, CD44 was highly expressed in AVE. The pathway analysis showed that metabolic process-related proteins and extracellular matrix-related proteins were enriched in valves. Differential enrichment of signaling pathways was observed in the endocardium. The hemostasis function-related proteins were increased in both endothelial cells. The proteins and pathways enriched in aortic-valvular and endocardial endothelial cells revealed the distinct phenotype of these two closely related cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.