Myotonic dystrophy type 1 (DM1) is caused by a highly unstable expansion of CTG repeats in the DMPK gene. Its huge phenotypic variability cannot be explained solely by the repeat number. Recently, variant repeats within the DMPK expansions have emerged as potential disease modifiers. The frequency of variant expanded alleles was estimated in 242 DM1 patients from 174 Serbian families using repeat-primed PCR (RP-PCR). The patterns of variant repeats were determined by direct sequencing of RP-PCR or PCR products. PCR-based southern blot was performed to get insight into the intergenerational mutational dynamics of variant expanded alleles. All patients carrying variant repeats were clinically re-examined. Variant repeats were observed in eight patients from five families (2.9%). They were detected only at the 3' end of DMPK expansions. CCG variant repeats were present in seven patients, either as a part of regular runs of CCGCTG hexamer, individual repeats, or CCG blocks. Analyses of three intergenerational transmissions revealed a considerable stability or likely a contraction of variant expanded alleles. Intriguingly, a decrease in age at onset accompanied these transmissions. Overall, patients were characterized by a milder phenotype and/or some atypical symptoms that could be rather clinically suggestive of myotonic dystrophy type 2. In addition, the first case of de novo CTC variant repeat was observed. Variant repeats might explain a part of the phenotypic variability in a small percent of DM1 patients and likely display a stabilizing effect on the meiotic instability of DMPK expanded alleles.
CTG expansions in DMPK gene, causing myotonic dystrophy type 1 (DM1), are characterized by pronounced somatic instability. A large proportion of variability of somatic instability is explained by expansion size and patient’s age at sampling, while individual-specific differences are attributed to additional factors. The age at onset is extremely variable in DM1, and inversely correlates with the expansion size and individual-specific differences in somatic instability. Three to five percent of DM1 patients carry repeat interruptions and some appear with later age at onset than expected for corresponding expansion size. Herein, we characterized somatic instability of interrupted DMPK expansions and the effect on age at onset in our previously described patients. Repeat-primed PCR showed stable structures of different types and patterns of repeat interruptions in blood cells over time and buccal cells. Single-molecule small-pool PCR quantification of somatic instability and mathematical modeling showed that interrupted expansions were characterized by lower level of somatic instability accompanied by slower progression over time. Mathematical modeling demonstrated that individual-specific differences in somatic instability had greater influence on age at onset in patients with interrupted expansions. Therefore, repeat interruptions have clinical importance for disease course in DM1 patients due to stabilizing effect on DMPK expansions in somatic cells.
Myotonic dystrophy type 1 (DM1) is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3′-UTR of the DMPK gene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling.
SA vulnerability in psychiatric patients is related to the joint effect of ADARB1 and HTR2C variants, the existing mood disorder and the cumulative exposures to a various childhood and recent stressful experiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.