Abstract-Atherosclerosis is an inflammatory disease. Its lesions are filled with immune cells that can orchestrate and effect inflammatory responses. In fact, the first lesions of atherosclerosis consist of macrophages and T cells. Unstable plaques are particularly rich in activated immune cells, suggesting that they may initiate plaque activation. We have seen a rapid increase in the understanding of the mechanisms that govern the recruitment, differentiation, and activation of immune cells in atherosclerosis. Experimental research has identified several candidate antigens, and there are encouraging data suggesting that immune modulation as well as immunization can reduce the progression of the disease. This review provides an overview of our current understanding of the role of immune mechanisms in atherosclerosis.
Immune responses to oxidized low-density lipoprotein (oxLDL) are proposed to be important in atherosclerosis. To identify the mechanisms of recognition that govern T cell responses to LDL particles, we generated T cell hybridomas from human ApoB100 transgenic (huB100tg) mice that were immunized with human oxLDL. Surprisingly, none of the hybridomas responded to oxidized LDL, only to native LDL and the purified LDL apolipoprotein ApoB100. However, sera from immunized mice contained IgG antibodies to oxLDL, suggesting that T cell responses to native ApoB100 help B cells making antibodies to oxLDL. ApoB100 responding CD4+ T cell hybridomas were MHC class II–restricted and expressed a single T cell receptor (TCR) variable (V) β chain, TRBV31, with different Vα chains. Immunization of huB100tgxLdlr−/− mice with a TRBV31-derived peptide induced anti-TRBV31 antibodies that blocked T cell recognition of ApoB100. This treatment significantly reduced atherosclerosis by 65%, with a concomitant reduction of macrophage infiltration and MHC class II expression in lesions. In conclusion, CD4+ T cells recognize epitopes on native ApoB100 protein, this response is associated with a limited set of clonotypic TCRs, and blocking TCR-dependent antigen recognition by these T cells protects against atherosclerosis.
This article explores the configural weighted average (CWA) hypothesis suggesting that extension biases, like conjunction and disjunction errors, occur because people estimate compound probabilities by taking a CWA of the constituent probabilities. The hypothesis suggests a process consistent with well-known cognitive constraints, which nonetheless achieves high robustness and bounded rationality in noisy real-life environments. Predictions by the CWA hypothesis are that in error-free data, conjunction and disjunction errors should be the rule rather than the exception when pairs of statements are randomly sampled from an environment, the rate of extension errors should increase when noise in data is decreased, and that adding a likely component should increase the probability of a conjunction. Four experiments generally verify the predictions by the hypothesis, demonstrating that extension errors are frequent also when tasks are selected according to representative design.
Increasing evidence suggests that atherosclerosis is an inflammatory disease promoted by hypercholesterolemia. The role of adaptive immunity has been controversial, however. We hypothesized that proatherogenic T cells are controlled by immunoregulatory cytokines. Among them, TGF-β has been implied in atherosclerosis, but its mechanism of action remains unclear. We crossed atherosclerosisprone ApoE-knockout mice with transgenic mice carrying a dominant negative TGF-β receptor II in T cells. The ApoE-knockout mice with disrupted TGF-β signaling in T cells exhibited a sixfold increase in aortic lesion surface area, a threefold increase in aortic root lesion size, and a 125-fold increase in aortic IFN-γ mRNA when compared with age-matched ApoE-knockout littermates. When comparing size-matched lesions, those of mice with T cell-specific blockade of TGF-β signaling displayed increased T cells, activated macrophages, and reduced collagen, consistent with a more vulnerable phenotype. Ab's to oxidized LDL, circulating T cell cytokines, and spleen T cell activity were all increased in ApoE-knockout mice with dominant negative TGF-β receptors in T cells. Taken together, these results show that abrogation of TGF-β signaling in T cells increases atherosclerosis and suggest that TGF-β reduces atherosclerosis by dampening T cell activation. Inhibition of T cell activation may therefore represent a strategy for antiatherosclerotic therapy.This article was publised online in advance of the print addition. The date of publication is available from the JCI website, http://www.jci.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.