Background False claims about COVID-19 vaccines can undermine public trust in ongoing vaccination campaigns, posing a threat to global public health. Misinformation originating from various sources has been spreading on the web since the beginning of the COVID-19 pandemic. Antivaccine activists have also begun to use platforms such as Twitter to promote their views. To properly understand the phenomenon of vaccine hesitancy through the lens of social media, it is of great importance to gather the relevant data. Objective In this paper, we describe a data set of Twitter posts and Twitter accounts that publicly exhibit a strong antivaccine stance. The data set is made available to the research community via our AvaxTweets data set GitHub repository. We characterize the collected accounts in terms of prominent hashtags, shared news sources, and most likely political leaning. Methods We started the ongoing data collection on October 18, 2020, leveraging the Twitter streaming application programming interface (API) to follow a set of specific antivaccine-related keywords. Then, we collected the historical tweets of the set of accounts that engaged in spreading antivaccination narratives between October 2020 and December 2020, leveraging the Academic Track Twitter API. The political leaning of the accounts was estimated by measuring the political bias of the media outlets they shared. Results We gathered two curated Twitter data collections and made them publicly available: (1) a streaming keyword–centered data collection with more than 1.8 million tweets, and (2) a historical account–level data collection with more than 135 million tweets. The accounts engaged in the antivaccination narratives lean to the right (conservative) direction of the political spectrum. The vaccine hesitancy is fueled by misinformation originating from websites with already questionable credibility. Conclusions The vaccine-related misinformation on social media may exacerbate the levels of vaccine hesitancy, hampering progress toward vaccine-induced herd immunity, and could potentially increase the number of infections related to new COVID-19 variants. For these reasons, understanding vaccine hesitancy through the lens of social media is of paramount importance. Because data access is the first obstacle to attain this goal, we published a data set that can be used in studying antivaccine misinformation on social media and enable a better understanding of vaccine hesitancy.
Democracies are postulated upon the ability to carry out fair elections, free from any form of interference or manipulation. Social media have been reportedly used to distort public opinion nearing election events in the United States and beyond. With over 240 million election-related tweets recorded between 20 June and 9 September 2020, in this study we chart the landscape of social media manipulation in the context of the upcoming 3 November 2020 U.S. presidential election. We focus on characterizing two salient dimensions of social media manipulation, namely (i) automation (e.g., the prevalence of bots), and (ii) distortion (e.g., manipulation of narratives, injection of conspiracies or rumors). Despite being outnumbered by several orders of magnitude, just a few thousands of bots generated spikes of conversations around real-world political events in all comparable with the volume of activity of humans. We discover that bots also exacerbate the consumption of content produced by users with their same political views, worsening the issue of political echo chambers. Furthermore, coordinated efforts carried out by Russia, China and other countries are hereby characterized. Finally, we draw a clear connection between bots, hyper-partisan media outlets, and conspiracy groups, suggesting the presence of systematic efforts to distort political narratives and propagate disinformation. Our findings may have impactful implications, shedding light on different forms of social media manipulation that may, altogether, ultimately pose a risk to the integrity of the election.
Background Gender imbalances in academia have been evident historically and persist today. For the past 60 years, we have witnessed the increase of participation of women in biomedical disciplines, showing that the gender gap is shrinking. However, preliminary evidence suggests that women, including female researchers, are disproportionately affected by the COVID-19 pandemic in terms of unequal distribution of childcare, elderly care, and other kinds of domestic and emotional labor. Sudden lockdowns and abrupt shifts in daily routines have had disproportionate consequences on their productivity, which is reflected by a sudden drop in research output in biomedical research, consequently affecting the number of female authors of scientific publications. Objective The objective of this study is to test the hypothesis that the COVID-19 pandemic has had a disproportionate adverse effect on the productivity of female researchers in the biomedical field in terms of authorship of scientific publications. Methods This is a retrospective observational bibliometric study. We investigated the proportion of male and female researchers who published scientific papers during the COVID-19 pandemic, using bibliometric data from biomedical preprint servers and selected Springer-Nature journals. We used the ordinary least squares regression model to estimate the expected proportions over time by correcting for temporal trends. We also used a set of statistical methods, such as the Kolmogorov-Smirnov test and regression discontinuity design, to test the validity of the results. Results A total of 78,950 papers from the bioRxiv and medRxiv repositories and from 62 selected Springer-Nature journals by 346,354 unique authors were analyzed. The acquired data set consisted of papers that were published between January 1, 2019, and August 2, 2020. The proportion of female first authors publishing in the biomedical field during the pandemic dropped by 9.1%, on average, across disciplines (expected arithmetic mean yest=0.39; observed arithmetic mean y=0.35; standard error of the estimate, Sest=0.007; standard error of the observation, σx=0.004). The impact was particularly pronounced for papers related to COVID-19 research, where the proportion of female scientists in the first author position dropped by 28% (yest=0.39; y=0.28; Sest=0.007; σx=0.007). When looking at the last authors, the proportion of women dropped by 7.9%, on average (yest=0.25; y=0.23; Sest=0.005; σx=0.003), while the proportion of women writing about COVID-19 as the last author decreased by 18.8% (yest=0.25; y=0.21; Sest=0.005; σx=0.007). Further, by geocoding authors’ affiliations, we showed that the gender disparities became even more apparent when disaggregated by country, up to 35% in some cases. Conclusions Our findings document a decrease in the number of publications by female authors in the biomedical field during the global pandemic. This effect was particularly pronounced for papers related to COVID-19, indicating that women are producing fewer publications related to COVID-19 research. This sudden increase in the gender gap was persistent across the 10 countries with the highest number of researchers. These results should be used to inform the scientific community of this worrying trend in COVID-19 research and the disproportionate effect that the pandemic has had on female academics.
Background The novel coronavirus, also known as SARS-CoV-2, has come to define much of our lives since the beginning of 2020. During this time, countries around the world imposed lockdowns and social distancing measures. The physical movements of people ground to a halt, while their online interactions increased as they turned to engaging with each other virtually. As the means of communication shifted online, information consumption also shifted online. Governing authorities and health agencies have intentionally shifted their focus to use social media and online platforms to spread factual and timely information. However, this has also opened the gate for misinformation, contributing to and accelerating the phenomenon of misinfodemics. Objective We carried out an analysis of Twitter discourse on over 1 billion tweets related to COVID-19 over a year to identify and investigate prevalent misinformation narratives and trends. We also aimed to describe the Twitter audience that is more susceptible to health-related misinformation and the network mechanisms driving misinfodemics. Methods We leveraged a data set that we collected and made public, which contained over 1 billion tweets related to COVID-19 between January 2020 and April 2021. We created a subset of this larger data set by isolating tweets that included URLs with domains that had been identified by Media Bias/Fact Check as being prone to questionable and misinformation content. By leveraging clustering and topic modeling techniques, we identified major narratives, including health misinformation and conspiracies, which were present within this subset of tweets. Results Our focus was on a subset of 12,689,165 tweets that we determined were representative of COVID-19 misinformation narratives in our full data set. When analyzing tweets that shared content from domains known to be questionable or that promoted misinformation, we found that a few key misinformation narratives emerged about hydroxychloroquine and alternative medicines, US officials and governing agencies, and COVID-19 prevention measures. We further analyzed the misinformation retweet network and found that users who shared both questionable and conspiracy-related content were clustered more closely in the network than others, supporting the hypothesis that echo chambers can contribute to the spread of health misinfodemics. Conclusions We presented a summary and analysis of the major misinformation discourse surrounding COVID-19 and those who promoted and engaged with it. While misinformation is not limited to social media platforms, we hope that our insights, particularly pertaining to health-related emergencies, will help pave the way for computational infodemiology to inform health surveillance and interventions.
How does the number of collaborators affect individual productivity? Results of prior research have been conflicting, with some studies reporting an increase in individual productivity as the number of collaborators grows, while other studies showing that the free-rider effect skews the effort invested by individuals, making larger groups less productive. The difference between these schools of thought is substantial: if a super-scaling effect exists, as suggested by former studies, then as groups grow, their productivity will increase even faster than their size, super-linearly improving their efficiency. We address this question by studying two planetary-scale collaborative systems: GitHub and Wikipedia. By analyzing the activity of over 2 million users on these platforms, we discover that the interplay between group size and productivity exhibits complex, previously-unobserved dynamics: the productivity of smaller groups scales super-linearly with group size, but saturates at larger sizes. This effect is not an artifact of the heterogeneity of productivity: the relation between group size and productivity holds at the individual level. People tend to do more when collaborating with more people. We propose a generative model of individual productivity that captures the non-linearity in collaboration effort. The proposed model is able to explain and predict group work dynamics in GitHub and Wikipedia by capturing their maximally informative behavioral features, and it paves the way for a principled, data-driven science of collaboration. 74:2Goran Murić et al.in the distribution of work, with a few "elite" users doing most of the work [12]. There is additional evidence of the fundamental differences in how groups operate within their respective fields based by their size: small groups produce more disruptive, innovative and potentially risky work, while larger groups tend to build on the existing concepts [34].Although groups have an advantage over individuals, it is unclear whether larger groups have an advantage over smaller groups. Even within the domain of software development, where teams of developers can vary in size up to hundreds of people, there are no clear answers to this question. Smaller teams are more agile and require less communication overhead to coordinate [7]. Smaller teams also avoid the "free-rider" effect [31], which leads individual members of larger teams to lower their effort if they perceive no impact (or proportionally lower impact) of their contributions [26]. In contrast, other research has shown that team size has a positive effect on the total amount of work invested in software developments projects [14,23,28]. Understanding the relationship between group size and performance can help improve productivity yielding policies to create optimal groups, e.g., by analyzing the cost-benefit of adding new collaborators versus upgrading the information technology [32].In a quest to disentangle the relationships between group productivity and its confounding factors, some researchers have s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.