Crowdsourcing is widely proposed as a method to solve a large variety of judgment tasks, such as classifying website content, peer grading in online courses, or collecting real-world data. As the data reported by workers cannot be verified, there is a tendency to report random data without actually solving the task. This can be countered by making the reward for an answer depend on its consistency with answers given by other workers, an approach called peer consistency. However, it is obvious that the best strategy in such schemes is for all workers to report the same answer without solving the task. Dasgupta and Ghosh [2013] show that, in some cases, exerting high effort can be encouraged in the highest-paying equilibrium. In this article, we present a general mechanism that implements this idea and is applicable to most crowdsourcing settings. Furthermore, we experimentally test the novel mechanism, and validate its theoretical properties.
We study fairness within the stochastic, multi-armed bandit (MAB) decision making framework. We adapt the fairness framework of "treating similar individuals similarly" [5] to this se ing. Here, an 'individual' corresponds to an arm and two arms are 'similar' if they have a similar quality distribution. First, we adopt a smoothness constraint that if two arms have a similar quality distribution then the probability of selecting each arm should be similar. In addition, we de ne the fairness regret, which corresponds to the degree to which an algorithm is not calibrated, where perfect calibration requires that the probability of selecting an arm is equal to the probability with which the arm has the best quality realization. We show that a variation on ompson sampling satis es smooth fairness for total variation distance, and give an Õ((kT ) 2/3 ) bound on fairness regret. is complements prior work [12], which protects an on-average be er arm from being less favored. We also explain how to extend our algorithm to the dueling bandit se ing.
Several mechanisms have been proposed for incentivizing truthful reports of a private signals owned by rational agents, among them the peer prediction method and the Bayesian truth serum. The robust Bayesian truth serum (RBTS) for small populations and binary signals is particularly interesting since it does not require a common prior to be known to the mechanism. We further analyze the problem of the common prior not known to the mechanism and give several results regarding the restrictions that need to be placed in order to have an incentive-compatible mechanism. Moreover, we construct a Bayes-Nash incentive-compatible scheme called multi-valued RBTS that generalizes RBTS to operate on both small populations and non-binary signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.