Coaching networks have been implemented in some Canadian companies as a way of building personal innovation and creativity. The authors describe how such a network can be developed using just‐in‐time adult education principles, within an interpretive paradigm. Dialogue and conversation through coaching are used as a potential vehicle to bring about both individual and organizational transformation. Program participants value the network in terms of the opportunity both to learn new and useful skills for the workplace, and the opportunity to build self‐confidence through relationships with others in the organization. Key issues for the authors include the need to build in‐house expertise, ownership of the program, and the amount of structure necessary to maintain program integrity yet still permit maximum creativity on the part of participants.
This paper presents a framework for construction of animated models from captured surface shape of real objects. Algorithms are introduced to transform the captured surface shape into a layered model. The layered model comprises an articulation structure, generic control model and a displacement map to represent the high-resolution surface detail. Novel methods are presented for automatic control model generation, shape constrained fitting and displacement mapping of the captured data. Results are demonstrated for surface shape captured using both multiple view images and active surface measurement. The framework enables rapid transformation of captured data into a structured representation suitable for realistic animation.
In this paper we present a layered framework for the animation of high-resolution human geometry captured using active 3D sensing technology. Commercial scanning systems can now acquire highly accurate surface data across the whole-body. However, the result is a dense, irregular, surface mesh without any structure for animation. We introduce a model-based approach to animating a scanned data-set by matching a generic humanoid control model to the surface data. A set of manually defined feature points are used to define body and facial pose, and a novel shape constrained matching algorithm is presented to deform the control model to match the scanned shape. This model-based approach allows the detailed specification of surface animation to be defined once for the generic model and re-applied to any captured scan. The detail of the high-resolution geometry is represented as a displacement map on the surface of the control model, providing smooth reconstruction of detailed shape on the animated control surface. The generic model provides animation control over the scan data-set, and the displacement map provides control of the high-resolution surface for editing of geometry, or level of detail in reconstruction or compression.
GORDON COLLINS and ADRIAN HILTON present a reviewof methods for the constructionand deformation of charactermodels. They consider both stateof the art research and common practice. In particular they review applications, data capture methods, manual model construction, polygonal, parametricand implicit surface representations, basic geometric deformations, free form deformations, subdivision surfaces, displacement map schemes and physical deformation. Copyright © 2001 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.