The dopamine system has been linked to anhedonia in depression and both the positive and negative symptoms of schizophrenia, but it remains unclear how dopamine dysfunction could mechanistically relate to observed symptoms. There is considerable evidence that phasic dopamine signals encode prediction error (differences between expected and actual outcomes), with reinforcement learning theories being based on prediction error-mediated learning of associations. It has been hypothesized that abnormal encoding of neural prediction error signals could underlie anhedonia in depression and negative symptoms in schizophrenia by disrupting learning and blunting the salience of rewarding events, and contribute to psychotic symptoms by promoting aberrant perceptions and the formation of delusions. To test this, we used model based functional magnetic resonance imaging and an instrumental reward-learning task to investigate the neural correlates of prediction errors and expected-reward values in patients with depression (n=15), patients with schizophrenia (n=14) and healthy controls (n=17). Both patient groups exhibited abnormalities in neural prediction errors, but the spatial pattern of abnormality differed, with the degree of abnormality correlating with syndrome severity. Specifically, reduced prediction errors in the striatum and midbrain were found in depression, with the extent of signal reduction in the bilateral caudate, nucleus accumbens and midbrain correlating with increased anhedonia severity. In schizophrenia, reduced prediction error signals were observed in the caudate, thalamus, insula and amygdala-hippocampal complex, with a trend for reduced prediction errors in the midbrain, and the degree of blunting in the encoding of prediction errors in the insula, amygdala-hippocampal complex and midbrain correlating with increased severity of psychotic symptoms. Schizophrenia was also associated with disruption in the encoding of expected-reward values in the bilateral amygdala-hippocampal complex and parahippocampal gyrus, with the degree of disruption correlating with psychotic symptom severity. Neural signal abnormalities did not correlate with negative symptom severity in schizophrenia. These findings support the suggestion that a disruption in the encoding of prediction error signals contributes to anhedonia symptoms in depression. In schizophrenia, the findings support the postulate of an abnormality in error-dependent updating of inferences and beliefs driving psychotic symptoms. Phasic dopamine abnormalities in depression and schizophrenia are suggested by our observation of prediction error abnormalities in dopamine-rich brain areas, given the evidence for dopamine encoding prediction errors. The findings are consistent with proposals that psychiatric syndromes reflect different disorders of neural valuation and incentive salience formation, which helps bridge the gap between biological and phenomenological levels of understanding.
Anhedonia is a core symptom of major depressive disorder (MDD), long thought to be associated with reduced dopaminergic function. However, most antidepressants do not act directly on the dopamine system and all antidepressants have a delayed full therapeutic effect. Recently, it has been proposed that antidepressants fail to alter dopamine function in antidepressant unresponsive MDD. There is compelling evidence that dopamine neurons code a specific phasic (short duration) reward-learning signal, described by temporal difference (TD) theory. There is no current evidence for other neurons coding a TD reward-learning signal, although such evidence may be found in time. The neuronal substrates of the TD signal were not explored in this study. Phasic signals are believed to have quite different properties to tonic (long duration) signals. No studies have investigated phasic reward-learning signals in MDD. Therefore, adults with MDD receiving long-term antidepressant medication, and comparison controls both unmedicated and acutely medicated with the antidepressant citalopram, were scanned using fMRI during a reward-learning task. Three hypotheses were tested: first, patients with MDD have blunted TD reward-learning signals; second, controls given an antidepressant acutely have blunted TD reward-learning signals; third, the extent of alteration in TD signals in major depression correlates with illness severity ratings. The results supported the hypotheses. Patients with MDD had significantly reduced reward-learning signals in many non-brainstem regions: ventral striatum (VS), rostral and dorsal anterior cingulate, retrosplenial cortex (RC), midbrain and hippocampus. However, the TD signal was increased in the brainstem of patients. As predicted, acute antidepressant administration to controls was associated with a blunted TD signal, and the brainstem TD signal was not increased by acute citalopram administration. In a number of regions, the magnitude of the abnormal signals in MDD correlated with illness severity ratings. The findings highlight the importance of phasic reward-learning signals, and are consistent with the hypothesis that antidepressants fail to normalize reward-learning function in antidepressant-unresponsive MDD. Whilst there is evidence that some antidepressants acutely suppress dopamine function, the long-term action of virtually all antidepressants is enhanced dopamine agonist responsiveness. This distinction might help to elucidate the delayed action of antidepressants. Finally, analogous to recent work in schizophrenia, the finding of abnormal phasic reward-learning signals in MDD implies that an integrated understanding of symptoms and treatment mechanisms is possible, spanning physiology, phenomenology and pharmacology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.