Abstract:The vulnerability of neurons and the irreversibility of loss make discoveries of neuroprotective compounds fundamentally important. Here, the complete coding sequence of a novel protein (828 amino acids, pI 5.99), derived from mouse neuroglial cells, is revealed. The sequence contained (1) a neuroprotective peptide, NAPVSIPQ, sharing structural and immunological homologies with the previously reported, activity-dependent neurotrophic factor; (2) a glutaredoxin active site; and (3) a zinc binding domain. Gene expression was enriched in the mouse hippocampus and cerebellum and augmented in the presence of the neuropeptide vasoactive intestinal peptide, in cerebral cortical astrocytes. In mixed neuronastrocyte cultures, NAPVSIPQ provided neuroprotection at subfemtomolar concentrations against toxicity associated with tetrodotoxin (electrical blockade), the -amyloid peptide (the Alzheimer's disease neurotoxin), N-methyl-D-aspartate (excitotoxicity), and the human immunodeficiency virus envelope protein. Daily NAPVSIPQ injections to newborn apolipoprotein E-deficient mice accelerated the acquisition of developmental reflexes and prevented short-term memory deficits. Comparative studies suggested that NAPVSIPQ was more efficacious than other neuroprotective peptides in the apolipoprotein E-deficiency model. A potential basis for rational drug design against neurodegeneration is suggested with NAPVSIPQ as a lead compound. The relative enrichment of the novel mRNA transcripts in the brain and the increases found in the presence of vasoactive intestinal peptide, an established neuroprotective substance, imply a role for the cloned protein in neuronal function. Key Words: Vasoactive intestinal peptide-Apolipoprotein E-Learning and memory-Neuronal survival-Molecular cloning-mRNA.
Activation of ionotropic glutamate receptors of the AMPA and NMDA subtypes likely contributes to neuronal injury and death in various neurodegenerative disorders. Excitotoxicity can manifest as either apoptosis or necrosis, but the mechanisms that determine the mode of cell death are not known. We now report that levels of AMPA receptor subunits GluR-1 and GluR-4 are rapidly decreased in cultured rat hippocampal neurons undergoing apoptosis in response to withdrawal of trophic support (WTS), whereas levels of NMDA receptor subunits NR1, NR2A, and NR2B are unchanged. Exposure of isolated synaptosomal membranes to "apoptotic" cytosolic extracts resulted in rapid degradation of AMPA receptor subunits. Treatment of cells and synaptosomal membranes with the caspase inhibitors prevented degradation of AMPA receptor subunits, demonstrating a requirement for caspases in the process. Calcium responses to AMPA receptor activation were reduced after withdrawal of trophic support and enhanced after treatment with caspase inhibitors. Vulnerability of neurons to excitotoxic necrosis was decreased after withdrawal of trophic support and potentiated by treatment with caspase inhibitors. Our data indicate that caspase-mediated degradation of AMPA receptor subunits occurs during early periods of cell stress and may serve to ensure apoptosis by preventing excitotoxic necrosis.
Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor that influences the survival and function of several neuronal populations in the central (CNS) and peripheral nervous systems. The actions of GDNF are mediated by a multicomponent receptor complex composed of the tyrosine kinase product of c-ret and the ligand-binding protein GDNF receptor alpha (GDNFR-alpha). In the present study, we used in situ hybridization to localize cells expressing the mRNA for these GDNF receptor subunits in rat CNS. As reported previously, GDNFR-alpha and c-ret mRNA are present in the substantia nigra and ventral tegmental area, regions containing GDNF-responsive dopamine neurons. However, both mRNA were found in motor neurons of spinal cord and brainstem nuclei that innervate skeletal muscle. These areas include alpha motor neurons in the ventral horn of spinal cord and neurons in hypoglossal, facial, trigeminal, and abducens nuclei. In areas rostral to the substantia nigra, c-ret mRNA is not detected, whereas GDNFR-alpha is found in numerous brain structures, including the hippocampus, cortex, medial geniculate, and the medial habenula, the latter area expressing the highest levels of GDNFR-alpha mRNA in brain. These results provide evidence that c-ret and GDNFR-alpha mRNA are expressed in neuronal populations involved in motor function and provides further support for GDNF as a target-derived neurotrophic for these motor neurons. The observation that GDNFR-alpha mRNA is localized in several brain structures that do not contain detectable levels of c-ret mRNA indicates that either GDNFR-alpha utilizes signal transduction molecules other than c-ret in these areas or that other GDNF-like ligands that utilize GDNFR-alpha as a receptor may be present.
OBJECTIVE-Peripheral neuropathy associated with type 2 diabetes (DPN) is not widely modeled. We describe unique features of DPN in type 2 diabetic Zucker diabetic fatty (ZDF) rats.RESEARCH DESIGN AND METHODS-We evaluated the structural, electrophysiological, behavioral, and molecular features of DPN in ZDF rats and littermates over 4 months of hyperglycemia. The status of insulin signaling transduction molecules that might be interrupted in type 2 diabetes and selected survival-, stress-, and pain-related molecules was emphasized in dorsal root ganglia (DRG) sensory neurons.RESULTS-ZDF rats developed slowing of motor sciatic-tibial and sensory sciatic digital conduction velocity and selective mechanical allodynia with preserved thermal algesia. Diabetic sural axons, preserved in number, developed atrophy, but there was loss of large-calibre dermal and small-calibre epidermal axons. In diabetic rats, insulin signal transduction pathways in lumbar DRGs were preserved or had trends toward upregulation: mRNA levels of insulin receptor -subunit (IR), insulin receptor substrate (IRS)-1, and IRS-2. The numbers of neurons expressing IR protein were also preserved. There were trends toward early rises of mRNA levels of heat shock protein 27 (HSP27), the ␣2␦1 calcium channel subunit, and phosphatidylinositol 3-kinase in diabetes. Others were unchanged, including nuclear factor-B (NF-B; p50/p105) and receptor for advanced glycosylation endproducts (RAGE) as was the proportion of neurons expressing HSP27, NF-B, and RAGE protein.CONCLUSIONS-ZDF type 2 diabetic rats develop a distal degenerative sensory neuropathy accompanied by a selective long-term pain syndrome. Neuronal insulin signal transduction molecules are preserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.