The present paper investigates the effect of fibre content and alkali treatment on tensile, flexural and impact properties of unidirectional Roystonea regia natural-fibre-reinforced epoxy composites which are partially biodegradable. The reinforcement Roystonea regia (royal palm) fibre was collected from the foliage of locally available royal palm tree through the process of water retting and mechanical extraction. The poor adhesion between fibre and matrix is commonly encountered problem in natural-fibre-reinforced composites. To overcome this problem, specific physical and chemical treatments were suggested for surface modification of fibres by investigators. Alkali treatment is one of the simple and effective surface modification techniques which is widely used in natural fibre composites. In the present study both untreated and alkali-treated fibres were used as reinforcement in Roystonea regia epoxy composites and the tensile, flexural and impact properties were determined at different fibre contents. The alkali treatment found to be effective in improving the tensile and flexural properties while the impact strength decreased.
The present paper investigates mechanical and electrical properties of Roystonea regia/glass fibre reinforced epoxy hybrid composites. Five varieties of hybrid composites have been prepared by varying the glass fibre loading. Roystonea regia (royal palm), a natural fibre was collected from the foliage of locally available royal palm tree through the process of water retting and mechanical extraction. Roystonea regia, E-glass short fibres were used together as reinforcement in epoxy matrix to form hybrid composites. It has been observed that tensile, flexural, impact and hardness properties of hybrid composites considerably increased with increase in glass fibre loading. But electrical conductivity and dielectric constant values decreased with increase in glass fibre content in the hybrid composites at all frequencies. Scanning electron microscopy of fractured hybrid composites has been carried out to study the fibre matrix adhesion.
The paper evaluates effect of fibre surface modification and hybridization on dynamic mechanical properties of Roystonea regia/epoxy composites. Surface modification involved alkali and silane treatments. Alkali treatment proved to be more effective on dynamic mechanical properties as compared to silane treatment. Storage and loss modulus values increased after treatments with simultaneous decrease in tan δ values. Roystonea regia and glass fibres were used together with varying proportions as reinforcement in epoxy matrix to study the hybridization effect on dynamic mechanical properties. Storage and loss modulus values increased with increase in glass fibre content whereas tan δ values were found to decrease. Scanning electron microscopy of tensile fractured surfaces was carried out to study the interface adhesion of different composites.
The present study investigates the electrical conductivity and dielectric properties of untreated and alkali-treated Roystonea regia natural fiber-reinforced epoxy composites at different frequencies along with compression and water absorption properties. Fiber was treated with 5% NaOH and characterized by chemical, thermogravimetric, tensile test, and SEM methods before and after alkali treatment. The interface between matrix and fiber was studied by SEM. Conductivity of alkali-treated fiber composites is lower than that of untreated fiber composites and increased with increase in frequency. The dielectric constant and loss tangent values of the composites were found to decrease after alkali treatment, and these values decreased with increase in frequency. Alkali-treated fiber composites showed improvements in compressive strength and water resistance when compared with untreated fiber composites.
Natural fibers are widely used for reinforcement in polymer composite materials and proved to be effectively replacing synthetic fiber reinforced polymer composites to some extent in applications like domestic, automotive and lower end aerospace parts. The natural fiber reinforced composites are environment friendly, have high strength to weight ratio as well as specific strengths comparable with synthetic glass fiber reinforced composites. In the present work, hybrid epoxy composites were fabricated using calotropis procera and glass fibers as reinforcement by hand lay-up method. The fibre reinforcement in epoxy matrix was maintained at 20 wt%. In 20 wt% reinforcement of fibre, the content of calotropis procera and glass fibre were varied from 5, 10, 15 and 20 wt%. The dry sliding wear test as per ASTM G99 and three body abrasive wear test as per ASTM G65 were conducted to find the tribological properties by varying speed, load, distance and abrasive size. The hybrid composite having 5 wt% calotropis procera and 15 wt% glass fibre showed less wear loss in hybrid composites both in sliding wear test as well as in abrasive wear test which is comparable with 20 wt% glass fibre reinforced epoxy composite which marked very low wear loss. The SEM analysis was carried out to study the worn out surfaces of dry sliding wear test and three body abrasive wear test specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.