Abstract:Static power has become the most important factor in the fabrication of integrated circuits. Power gating techniques minimize leakage currents and help to develop ultra-low-power and high-performance digital circuits. In this paper, a power gating approach is proposed to minimize leakage for subnanometer technologies. Simulation results reveal that the proposed technique reduces maximum of 96% leakage power, 33% dynamic power, 49% drowsy power, and 16% energy as compared to conventional techniques. The proposed technique offers good leakage reduction, even under variation of different operating parameters.
The design, analysis, and control methodology of an energy efficient and high force to weight ratio rare earth N42 NdFeB based permanent magnet linear oscillating motor has been described. For this axial flux machine the mover is consisting of Aluminium structure embedded with rare earth permanent magnets of high energy density. Microcontroller based drive is developed for frequency and thrust control of the machine. Finite element method using FEMM is employed for analysis of various performance parameters of machine. The same parameters are also compared with the measured ones, which yields a good agreement to the proposed design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.