Despite their success in a variety of NLP tasks, pre-trained language models, due to their heavy reliance on compositionality, fail in effectively capturing the meanings of multiword expressions (MWEs), especially idioms. Therefore, datasets and methods to improve the representation of MWEs are urgently needed. Existing datasets are limited to providing the degree of idiomaticity of expressions along with the literal and, where applicable, (a single) non-literal interpretation of MWEs. This work presents a novel dataset of naturally occurring sentences containing MWEs manually classified into a fine-grained set of meanings, spanning both English and Portuguese. We use this dataset in two tasks designed to test i) a language model's ability to detect idiom usage, and ii) the effectiveness of a language model in generating representations of sentences containing idioms. Our experiments demonstrate that, on the task of detecting idiomatic usage, these models perform reasonably well in the one-shot and few-shot scenarios, but that there is significant scope for improvement in the zero-shot scenario. On the task of representing idiomaticity, we find that pre-training is not always effective, while finetuning could provide a sample efficient method of learning representations of sentences containing MWEs.
This paper presents the shared task on Multilingual Idiomaticity Detection and Sentence Embedding, which consists of two Subtasks: (a) a binary classification task aimed at identifying whether a sentence contains an idiomatic expression, and (b) a task based on semantic text similarity which requires the model to adequately represent potentially idiomatic expressions in context. Each Subtask includes different settings regarding the amount of training data. Besides the task description, this paper introduces the datasets in English, Portuguese, and Galician and their annotation procedure, the evaluation metrics, and a summary of the participant systems and their results. The task had close to 100 registered participants organised into twenty five teams making over 650 and 150 submissions in the practice and evaluation phases respectively.
Tokenisation is the first step in almost all NLP tasks, and state-of-the-art transformer-based language models all use subword tokenisation algorithms to process input text. Existing algorithms have problems, often producing tokenisations of limited linguistic validity, and representing equivalent strings differently depending on their position within a word. We hypothesise that these problems hinder the ability of transformer-based models to handle complex words, and suggest that these problems are a result of allowing tokens to include spaces. We thus experiment with an alternative tokenisation approach where spaces are always treated as individual tokens. Specifically, we apply this modification to the BPE and Unigram algorithms. We find that our modified algorithms lead to improved performance on downstream NLP tasks that involve handling complex words, whilst having no detrimental effect on performance in general natural language understanding tasks. Intrinsically, we find our modified algorithms give more morphologically correct tokenisations, in particular when handling prefixes. Given the results of our experiments, we advocate for always treating spaces as individual tokens as an improved tokenisation method.
In this paper we describe the University of Sheffield's submission to the AmericasNLP 2023 Shared Task on Machine Translation into Indigenous Languages which comprises the translation from Spanish to eleven indigenous languages. Our approach consists of extending, training, and ensembling different variations of NLLB-200. We use data provided by the organizers and data from various other sources such as constitutions, handbooks, news articles, and backtranslations generated from monolingual data. On the dev set, our best submission outperforms the baseline by 11% average chrF across all languages, with substantial improvements particularly for Aymara, Guarani and Quechua. On the test set, we achieve the highest average chrF of all the submissions, we rank first in four of the eleven languages, and at least one of our submissions ranks in the top 3 for all languages. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.