The automatic identification of propaganda has gained significance in recent years due to technological and social changes in the way news is generated and consumed. That this task can be addressed effectively using BERT, a powerful new architecture which can be finetuned for text classification tasks, is not surprising. However, propaganda detection, like other tasks that deal with news documents and other forms of decontextualized social communication (e.g. sentiment analysis), inherently deals with data whose categories are simultaneously imbalanced and dissimilar. We show that BERT, while capable of handling imbalanced classes with no additional data augmentation, does not generalise well when the training and test data are sufficiently dissimilar (as is often the case with news sources, whose topics evolve over time). We show how to address this problem by providing a statistical measure of similarity between datasets and a method of incorporating cost-weighting into BERT when the training and test sets are dissimilar. We test these methods on the Propaganda Techniques Corpus (PTC) and achieve the second highest score on sentence-level propaganda classification.
Despite their success in a variety of NLP tasks, pre-trained language models, due to their heavy reliance on compositionality, fail in effectively capturing the meanings of multiword expressions (MWEs), especially idioms. Therefore, datasets and methods to improve the representation of MWEs are urgently needed. Existing datasets are limited to providing the degree of idiomaticity of expressions along with the literal and, where applicable, (a single) non-literal interpretation of MWEs. This work presents a novel dataset of naturally occurring sentences containing MWEs manually classified into a fine-grained set of meanings, spanning both English and Portuguese. We use this dataset in two tasks designed to test i) a language model's ability to detect idiom usage, and ii) the effectiveness of a language model in generating representations of sentences containing idioms. Our experiments demonstrate that, on the task of detecting idiomatic usage, these models perform reasonably well in the one-shot and few-shot scenarios, but that there is significant scope for improvement in the zero-shot scenario. On the task of representing idiomaticity, we find that pre-training is not always effective, while finetuning could provide a sample efficient method of learning representations of sentences containing MWEs.
This paper presents the shared task on Multilingual Idiomaticity Detection and Sentence Embedding, which consists of two Subtasks: (a) a binary classification task aimed at identifying whether a sentence contains an idiomatic expression, and (b) a task based on semantic text similarity which requires the model to adequately represent potentially idiomatic expressions in context. Each Subtask includes different settings regarding the amount of training data. Besides the task description, this paper introduces the datasets in English, Portuguese, and Galician and their annotation procedure, the evaluation metrics, and a summary of the participant systems and their results. The task had close to 100 registered participants organised into twenty five teams making over 650 and 150 submissions in the practice and evaluation phases respectively.
While lexico-semantic elements no doubt capture a large amount of linguistic information, it has been argued that they do not capture all information contained in text. This assumption is central to constructionist approaches to language which argue that language consists of constructions, learned pairings of a form and a function or meaning that are either frequent or have a meaning that cannot be predicted from its component parts. BERT's training objectives give it access to a tremendous amount of lexico-semantic information, and while BERTology has shown that BERT captures certain important linguistic dimensions, there have been no studies exploring the extent to which BERT might have access to constructional information. In this work we design several probes and conduct extensive experiments to answer this question. Our results allow us to conclude that BERT does indeed have access to a significant amount of information, much of which linguists typically call constructional information. The impact of this observation is potentially far-reaching as it provides insights into what deep learning methods learn from text, while also showing that information contained in constructions is redundantly encoded in lexicosemantics.
The idea that a shift in concreteness within a sentence indicates the presence of a metaphor has been around for a while. However, recent methods of detecting metaphor that have relied on deep neural models have ignored concreteness and related psycholinguistic information. We hypothesis that this information is not available to these models and that their addition will boost the performance of these models in detecting metaphor. We test this hypothesis on the Metaphor Detection Shared Task 2020 and find that the addition of concreteness information does in fact boost deep neural models. We also run tests on data from a previous shared task and show similar results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.