Introduction: Coronavirus disease (COVID-19) is ongoing as a global epidemic and there is still a need to develop much safer and more effective new vaccines that can also be easily adapted to important variants of the pathogen. In the present study in this direction, we developed a new COVID-19 vaccine, composed of two critical antigenic fragments of the S1 and S2 region of severe acute respiratory syndrome coronavirus 2 as well as the whole nucleocapsid protein (N), which was formulated with either alum or alum plus monophosphoryl lipid A (MPLA) adjuvant combinations. Methods: From within the spike protein S1 region, a fragmented protein P1 (MW:33 kDa) which includes the receptor-binding domain (RBD), another fragment protein P2 (MW:17.6) which contains important antigenic epitopes within the spike protein S2 region, and N protein (MW:46 kDa) were obtained after recombinant expression of the corresponding gene regions in Escherichia coli BL21. For use in immunization studies, three proteins were adsorbed with aluminum hydroxide gel and with the combination of aluminum hydroxide gel plus MPLA.Results: Each of the three protein antigens produced strong reactions in enzyme-linked immunosorbent assays and Western blot analysis studies performed with convalescent COVID-19 patient sera. In mice, these combined protein vaccine candidates elicited high titer anti-P1, anti-P2, and anti-N IgG and IgG2a responses. These also induced highly neutralizing antibodies and elicited significant cell-mediated immunity as demonstrated by enhanced antigen-specific levels of interferon-γ (INF-γ) in the splenocytes of immunized mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.