This paper describes a multiplatform analytical approach combining proton nuclear magnetic resonance ((1)H NMR) spectroscopy and mass spectrometry (MS), together with pattern recognition tools in a metabolomic study used to investigate the effects of dengue virus infection. The four serotypes of dengue, DEN-1, DEN-2, DEN-3, and DEN-4, were inoculated into the EA.hy926 cell line, which was then incubated for various time intervals. Principal component analysis (PCA) of the (1)H NMR and MS data revealed metabolic profile patterns or fingerprint patterns that can be attributed to specific virus serotypes. Distinct effects of infection by each serotype were demonstrated, and these differences were attributed to changes in levels of metabolites (including amino acids, dicarboxylic acids, fatty acids, and organic acids related to the tricarboxylic acid (TCA) cycle). The study demonstrated application of metabolomics to improve understanding of the effect of dengue infection on endothelial cells' metabolome.
Selected pharmaceuticals including antibiotics, antipyretics, a stimulant, an antiepileptic and an antipsychotic drug were determined in wastewater, surface water and sediment along the Umgeni River which is the main source of water to Durban City in KwaZulu-Natal, South Africa. Samples were analysed using high-performance liquid chromatography coupled to a mass spectrometer (HPLC-MS/MS) after clean up and pre-concentration by solid phase extraction (SPE). At the wastewater treatment plant outlet, the antipyretic ibuprofen was detected in concentrations up to 12.94 μg/L and 15.96 ng/g in wastewater and bio-solids, respectively. The antipsychotic clozapine was detected in concentrations up to 14.43 μg/L and 18.75 ng/g in wastewater and bio-solids, respectively. Other pharmaceuticals namely sulfamethazine, sulfamethoxazole, erythromycin, metronidazole, trimethoprim, acetaminophen, caffeine and carbamazepine were also detected but in lower concentration compared to clozapine and ibuprofen (<10 μg/L or 10 ng/g). Clozapine and ibuprofen were detected at high concentrations in the surface water and sediment of Umgeni River. The highest concentration of clozapine (78.33 μg/L) was detected at the business park, while that for ibuprofen (62.0 μg/L) was detected at the point where a tributary, Msunduzi, joins Umgeni. Metronidazole was only detected in sediment, and caffeine (2243.52 ng/g) was detected at the highest concentration in the sediment at the blue lagoon sampling site. The antibiotic sulfamethoxazole was also detected in appreciable amounts up to 507.34 ng/g in the sediment at the Msunduzi tributary sampling site. The data collected implies that while insufficiently treated wastewater contributes to surface water contamination, human activities also contribute appreciably to the pharmaceutical loading of River Umgeni.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.