This paper describes a multiplatform analytical approach combining proton nuclear magnetic resonance ((1)H NMR) spectroscopy and mass spectrometry (MS), together with pattern recognition tools in a metabolomic study used to investigate the effects of dengue virus infection. The four serotypes of dengue, DEN-1, DEN-2, DEN-3, and DEN-4, were inoculated into the EA.hy926 cell line, which was then incubated for various time intervals. Principal component analysis (PCA) of the (1)H NMR and MS data revealed metabolic profile patterns or fingerprint patterns that can be attributed to specific virus serotypes. Distinct effects of infection by each serotype were demonstrated, and these differences were attributed to changes in levels of metabolites (including amino acids, dicarboxylic acids, fatty acids, and organic acids related to the tricarboxylic acid (TCA) cycle). The study demonstrated application of metabolomics to improve understanding of the effect of dengue infection on endothelial cells' metabolome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.