Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma.
Using a robust and quantitative assay, we have identified a novel class of DNA polymerase inhibitors that exhibits some specificity against an enzyme involved in resistance to anti-cancer drugs, namely human DNA polymerase eta (hpol η). In our initial screen, we identified the indole thiobarbituric acid (ITBA) derivative 5-((1-(2-bromobenzoyl)-5-chloro-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (ITBA-12) as an inhibitor of the Y-family DNA member hpol η, an enzyme that has been associated with increased resistance to cisplatin and doxorubicin treatments. An additional seven DNA polymerases from different sub-families were tested for inhibition by ITBA-12. Hpol η was the most potently inhibited enzyme (30 ± 3 μM), with hpol β, hpol γ and hpol κ exhibiting comparable but higher IC50 values of 41 ± 24 μM, 49 ± 6 μM and 59 ± 11 μM, respectively. The other polymerases tested had IC50 values closer to 80 μM. Steady-state kinetic analysis was used to investigate the mechanism of polymerase inhibition by ITBA-12. Based on changes in the Michaelis constant, it was determined that ITBA-12 acts as an allosteric (or partial) competitive inhibitor of dNTP binding. The parent ITBA scaffold was modified to produce 20 derivatives and establish structure-activity relationships by testing for inhibition of hpol η. Two compounds with N-naphthoyl Ar-substituents, ITBA-16 and ITBA-19, were both found to have improved potency against hpol η with IC50 values of 16 ± 3 μM and 17 ± 3 μM, respectively. Moreover, the specificity of ITBA-16 was improved relative to ITBA-12. The presence of a chloro substituent at position 5 on the indole ring appears to be crucial for effective inhibition of hpol η, with the indole N-1-naphthoyl and N-2-naphthoyl analogs being the most potent inhibitors of hpol η. These results provide a framework from which second-generation ITBA derivatives may be developed against specialized polymerases that are involved in mechanisms of radio- and chemo-resistance.
Relapsed neuroblastomas are enriched with activating mutations of the RAS-MAPK signaling pathway. The MEK1/ 2 inhibitor trametinib delays tumor growth but does not sustain regression in neuroblastoma preclinical models. Recent studies have implicated the Hippo pathway transcriptional coactivator protein YAP1 as an additional driver of relapsed neuroblastomas, as well as a mediator of trametinib resistance in other cancers. Here, we used a highly annotated set of high-risk neuroblastoma cellular models to modulate YAP1 expression and RAS pathway activation to test whether increased YAP1 transcriptional activity is a mechanism of MEK1/2 inhibition resistance in RAS-driven neuroblastomas. In NLF (biallelic NF1 inactivation) and SK-N-AS (NRAS Q61K) cell lines, trametinib caused a near-complete translocation of YAP1 protein into the nucleus. YAP1 depletion sensitized neuroblastoma cells to trametinib, while overexpression of constitutively active YAP1 protein induced trametinib resistance. Mechanistically, significant enhancement of G 1 -S cell-cycle arrest, mediated by depletion of MYC/MYCN and E2F transcriptional output, sensitized RAS-driven neuroblastomas to trametinib following YAP1 deletion. These findings underscore the importance of YAP activity in response to trametinib in RAS-driven neuroblastomas, as well as the potential for targeting YAP in a trametinib combination.Significance: High-risk neuroblastomas with hyperactivated RAS signaling escape the selective pressure of MEK inhibition via YAP1-mediated transcriptional reprogramming and may be sensitive to combination therapies targeting both YAP1 and MEK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.